BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31724459)

  • 1. The xanthophyll cycle as an early pathogenic target to deregulate guard cells during
    Zeng L; Yang X; Zhou J
    Plant Signal Behav; 2020; 15(1):1691704. PubMed ID: 31724459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.
    Zhou J; Zeng L; Liu J; Xing D
    PLoS Pathog; 2015 May; 11(5):e1004878. PubMed ID: 25993128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection.
    Guimarães RL; Stotz HU
    Plant Physiol; 2004 Nov; 136(3):3703-11. PubMed ID: 15502012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).
    Zhu SQ; Chen MW; Ji BH; Jiao DM; Liang JS
    J Exp Bot; 2011 Aug; 62(13):4617-25. PubMed ID: 21642236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.
    Nowicka B; Strzalka W; Strzalka K
    J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.
    Heller A; Witt-Geiges T
    PLoS One; 2013; 8(8):e72292. PubMed ID: 23951305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids.
    Schwarz N; Armbruster U; Iven T; Brückle L; Melzer M; Feussner I; Jahns P
    Plant Cell Physiol; 2015 Feb; 56(2):346-57. PubMed ID: 25416291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma.
    Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia.
    Atallah O; Yassin S
    Environ Microbiol; 2020 Dec; 22(12):5265-5279. PubMed ID: 32844537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence.
    Rana K; Yuan J; Liao H; Banga SS; Kumar R; Qian W; Ding Y
    Microbiol Res; 2022 May; 258():126981. PubMed ID: 35183041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolved organic matter derived from rape straw pretreated with selenium in soil improves the inhibition of Sclerotinia sclerotiorum growth.
    Jia W; Hu C; Xu J; Ming J; Zhao Y; Cai M; Sun X; Liu X; Zhao X
    J Hazard Mater; 2019 May; 369():601-610. PubMed ID: 30825806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.
    Wang C; Yao J; Du X; Zhang Y; Sun Y; Rollins JA; Mou Z
    Plant Physiol; 2015 Sep; 169(1):856-72. PubMed ID: 26143252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.
    Jain A; Singh A; Singh S; Sarma BK; Singh HB
    J Basic Microbiol; 2015 May; 55(5):601-6. PubMed ID: 24920251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant.
    Cessna SG; Sears VE; Dickman MB; Low PS
    Plant Cell; 2000 Nov; 12(11):2191-200. PubMed ID: 11090218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner.
    Harel A; Bercovich S; Yarden O
    Mol Plant Microbe Interact; 2006 Jun; 19(6):682-93. PubMed ID: 16776301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Johnson MP; Davison PA; Ruban AV; Horton P
    FEBS Lett; 2008 Jan; 582(2):262-6. PubMed ID: 18083127
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Chen J; Ullah C; Giddings Vassão D; Reichelt M; Gershenzon J; Hammerbacher A
    Phytopathology; 2021 Mar; 111(3):559-569. PubMed ID: 32876531
    [No Abstract]   [Full Text] [Related]  

  • 19. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.
    Zimmerli C; Ribot C; Vavasseur A; Bauer H; Hedrich R; Poirier Y
    Plant J; 2012 Oct; 72(2):199-211. PubMed ID: 22612335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivity, physiological characteristics and efficacy of the SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum.
    Huang XP; Luo J; Li BX; Song YF; Mu W; Liu F
    Pestic Biochem Physiol; 2019 Oct; 160():70-78. PubMed ID: 31519259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.