BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31725257)

  • 1. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response.
    Yin B; Chan CKW; Liu S; Hong H; Wong SHD; Lee LKC; Ho LWC; Zhang L; Leung KC; Choi PC; Bian L; Tian XY; Chan MN; Choi CHJ
    ACS Nano; 2019 Dec; 13(12):14048-14069. PubMed ID: 31725257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary fate and consequences of transferrin-functionalized gold nanoparticles.
    Konduru NV; Velasco-Alzate K; Adduri S; Zagorovsky K; Diaz-Diestra D; Fisol F; Sanches M; Ndetan H; Brain JD; Molina RM
    Nanotheranostics; 2021; 5(3):309-320. PubMed ID: 33732602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages.
    Shaw CA; Mortimer GM; Deng ZJ; Carter ES; Connell SP; Miller MR; Duffin R; Newby DE; Hadoke PW; Minchin RF
    Nanotoxicology; 2016 Sep; 10(7):981-91. PubMed ID: 27027807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein corona: implications for nanoparticle interactions with pulmonary cells.
    Konduru NV; Molina RM; Swami A; Damiani F; Pyrgiotakis G; Lin P; Andreozzi P; Donaghey TC; Demokritou P; Krol S; Kreyling W; Brain JD
    Part Fibre Toxicol; 2017 Oct; 14(1):42. PubMed ID: 29084556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lobar evenness of deposition/retention in rat lungs of inhaled silver nanoparticles: an approach for reducing animal use while maximizing endpoints.
    Park JD; Kim JK; Jo MS; Kim YH; Jeon KS; Lee JH; Faustman EM; Lee HK; Ahn K; Gulumian M; Oberdörster G; Yu IJ
    Part Fibre Toxicol; 2019 Jan; 16(1):2. PubMed ID: 30616672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona.
    Saha K; Rahimi M; Yazdani M; Kim ST; Moyano DF; Hou S; Das R; Mout R; Rezaee F; Mahmoudi M; Rotello VM
    ACS Nano; 2016 Apr; 10(4):4421-30. PubMed ID: 27040442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodistribution of inhaled gold nanoparticles in mice and the influence of surfactant protein D.
    Schleh C; Holzwarth U; Hirn S; Wenk A; Simonelli F; Schäffler M; Möller W; Gibson N; Kreyling WG
    J Aerosol Med Pulm Drug Deliv; 2013 Feb; 26(1):24-30. PubMed ID: 22856532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice.
    Aalapati S; Ganapathy S; Manapuram S; Anumolu G; Prakya BM
    Nanotoxicology; 2014 Nov; 8(7):786-98. PubMed ID: 23914771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Protein Corona on Active and Passive Targeting of Cyclic RGD Peptide-Functionalized PEGylation Nanoparticles.
    Su G; Jiang H; Xu B; Yu Y; Chen X
    Mol Pharm; 2018 Nov; 15(11):5019-5030. PubMed ID: 30222356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Nrf2 in inflammatory response in lung of mice exposed to zinc oxide nanoparticles.
    Sehsah R; Wu W; Ichihara S; Hashimoto N; Hasegawa Y; Zong C; Itoh K; Yamamoto M; Elsayed AA; El-Bestar S; Kamel E; Ichihara G
    Part Fibre Toxicol; 2019 Dec; 16(1):47. PubMed ID: 31842927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging of Nanoplastics Significantly Affects Protein Corona Composition Thus Enhancing Macrophage Uptake.
    Du T; Yu X; Shao S; Li T; Xu S; Wu L
    Environ Sci Technol; 2023 Feb; 57(8):3206-3217. PubMed ID: 36730723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation.
    Li Y; Shi Z; Radauer-Preiml I; Andosch A; Casals E; Luetz-Meindl U; Cobaleda M; Lin Z; Jaberi-Douraki M; Italiani P; Horejs-Hoeck J; Himly M; Monteiro-Riviere NA; Duschl A; Puntes VF; Boraschi D
    Nanotoxicology; 2017; 11(9-10):1157-1175. PubMed ID: 29192556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles in the lung and their protein corona: the few proteins that count.
    Whitwell H; Mackay RM; Elgy C; Morgan C; Griffiths M; Clark H; Skipp P; Madsen J
    Nanotoxicology; 2016 Nov; 10(9):1385-94. PubMed ID: 27465202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammatory bowel disease alters in vivo distribution of orally administrated nanoparticles: Revealing via SERS tag labeling technique.
    Tan M; Wang Y; Ji Y; Mei R; Zhao X; Song J; You J; Chen L; Wang X
    Talanta; 2024 Aug; 275():126172. PubMed ID: 38692050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice.
    Nemmar A; Al-Salam S; Beegam S; Yuvaraju P; Ali BH
    Int J Nanomedicine; 2017; 12():2913-2922. PubMed ID: 28435267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerosolized Silver Nanoparticles in the Rat Lung and Pulmonary Responses over Time.
    Silva RM; Anderson DS; Peake J; Edwards PC; Patchin ES; Guo T; Gordon T; Chen LC; Sun X; Van Winkle LS; Pinkerton KE
    Toxicol Pathol; 2016 Jul; 44(5):673-86. PubMed ID: 27025955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation.
    Silva RM; Anderson DS; Franzi LM; Peake JL; Edwards PC; Van Winkle LS; Pinkerton KE
    Toxicol Sci; 2015 Mar; 144(1):151-62. PubMed ID: 25628415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles.
    Chuang HC; Juan HT; Chang CN; Yan YH; Yuan TH; Wang JS; Chen HC; Hwang YH; Lee CH; Cheng TJ
    Nanotoxicology; 2014 Sep; 8(6):593-604. PubMed ID: 23738974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles.
    Ma Z; Bai J; Jiang X
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17614-22. PubMed ID: 26200209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.