BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31725289)

  • 1. Mechanism of Facilitated Diffusion of DNA Repair Proteins in Crowded Environment: Case Study with Human Uracil DNA Glycosylase.
    Dey P; Bhattacherjee A
    J Phys Chem B; 2019 Dec; 123(49):10354-10364. PubMed ID: 31725289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions.
    Perkins JL; Zhao L
    DNA Repair (Amst); 2021 May; 101():103077. PubMed ID: 33640758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cosolute paramagnetic relaxation enhancements detect transient conformations of human uracil DNA glycosylase (hUNG).
    Sun Y; Friedman JI; Stivers JT
    Biochemistry; 2011 Dec; 50(49):10724-31. PubMed ID: 22077282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural role of uracil DNA glycosylase for the recognition of uracil in DNA duplexes. Clues from atomistic simulations.
    Franco D; Sgrignani J; Bussi G; Magistrato A
    J Chem Inf Model; 2013 Jun; 53(6):1371-87. PubMed ID: 23705837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.
    Schonhoft JD; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2536-44. PubMed ID: 23506270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular crowding enhances facilitated diffusion of two human DNA glycosylases.
    Cravens SL; Schonhoft JD; Rowland MM; Rodriguez AA; Anderson BG; Stivers JT
    Nucleic Acids Res; 2015 Apr; 43(8):4087-97. PubMed ID: 25845592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human ribosomal protein S3 (hRpS3) interacts with uracil-DNA glycosylase (hUNG) and stimulates its glycosylase activity.
    Ko SI; Park JH; Park MJ; Kim J; Kang LW; Han YS
    Mutat Res; 2008 Dec; 648(1-2):54-64. PubMed ID: 18973764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge.
    Schonhoft JD; Kosowicz JG; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2526-35. PubMed ID: 23506309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.
    Pedersen HL; Johnson KA; McVey CE; Leiros I; Moe E
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2137-49. PubMed ID: 26457437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic properties of complexes along a DNA glycosylase damage search pathway.
    Cravens SL; Hobson M; Stivers JT
    Biochemistry; 2014 Dec; 53(48):7680-92. PubMed ID: 25408964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils.
    Porecha RH; Stivers JT
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10791-6. PubMed ID: 18669665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Cd(II) on the stability of human uracil DNA glycosylase enzyme; an implication of molecular dynamics trajectories on stability analysis.
    Paligaspe P; Weerasinghe S; Dissanayake DP; Senthilnithy R
    J Biomol Struct Dyn; 2022; 40(24):14027-14034. PubMed ID: 34738875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action mechanism of human SMUG1 uracil-DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ide H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):295-6. PubMed ID: 17150750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG.
    Cravens SL; Stivers JT
    Biochemistry; 2016 Sep; 55(37):5230-42. PubMed ID: 27571472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of nucleotide opening dynamics in facilitated target search by DNA-repair proteins.
    Mishra SK; Sangeeta ; Heermann DW; Bhattacherjee A
    Biochim Biophys Acta Gene Regul Mech; 2024 Jun; 1867(2):195026. PubMed ID: 38641240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uracil-directed ligand tethering: an efficient strategy for uracil DNA glycosylase (UNG) inhibitor development.
    Jiang YL; Krosky DJ; Seiple L; Stivers JT
    J Am Chem Soc; 2005 Dec; 127(49):17412-20. PubMed ID: 16332091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry-based analysis of macromolecular complexes of
    Papp-Kádár V; Balázs Z; Vékey K; Ozohanics O; Vértessy BG
    FEBS Open Bio; 2019 Mar; 9(3):420-427. PubMed ID: 30868050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme.
    Hendricks U; Crous W; Naidoo KJ
    J Chem Inf Model; 2014 Dec; 54(12):3362-72. PubMed ID: 25369428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic interactions play an essential role in DNA repair and cold-adaptation of uracil DNA glycosylase.
    Olufsen M; Smalås AO; Brandsdal BO
    J Mol Model; 2008 Mar; 14(3):201-13. PubMed ID: 18196298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.