These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31725368)

  • 1. Joint, Partially-Joint, and Individual Independent Component Analysis in Multi-Subject fMRI Data.
    Pakravan M; Shamsollahi MB
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1969-1981. PubMed ID: 31725368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal joint, partially-joint and individual sources in independent component analysis: Application to social brain fMRI dataset.
    Pakravan M; Shamsollahi MB
    J Neurosci Methods; 2020 Jan; 329():108453. PubMed ID: 31644994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and Automatic Grouping of Joint and Individual Sources in Multisubject fMRI Data Using Higher Order Cumulants.
    Pakravan M; Shamsollahi MB
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):744-757. PubMed ID: 29993727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-variate blind source separation algorithm.
    Goldhacker M; Keck P; Igel A; Lang EW; Tomé AM
    Comput Methods Programs Biomed; 2017 Nov; 151():91-99. PubMed ID: 28947009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind fMRI source unmixing via higher-order tensor decompositions.
    Chatzichristos C; Kofidis E; Morante M; Theodoridis S
    J Neurosci Methods; 2019 Mar; 315():17-47. PubMed ID: 30553751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis.
    Iqbal A; Seghouane AK; Adali T
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2519-2528. PubMed ID: 29993508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.
    Shi Y; Zeng W; Wang N
    Comput Methods Programs Biomed; 2017 Sep; 148():137-151. PubMed ID: 28774436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering fMRI data with a robust unsupervised learning algorithm for neuroscience data mining.
    Aljobouri HK; Jaber HA; Koçak OM; Algin O; Çankaya I
    J Neurosci Methods; 2018 Apr; 299():45-54. PubMed ID: 29471065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous use of individual and joint regularization terms in compressive sensing: Joint reconstruction of multi-channel multi-contrast MRI acquisitions.
    Kopanoglu E; Güngör A; Kilic T; Saritas EU; Oguz KK; Çukur T; Güven HE
    NMR Biomed; 2020 Apr; 33(4):e4247. PubMed ID: 31970849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.
    Ulloa A; Jingyu Liu ; Vergara V; Jiayu Chen ; Calhoun V; Pattichis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6651-4. PubMed ID: 25571521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale sparse functional networks from resting state fMRI.
    Li H; Satterthwaite TD; Fan Y
    Neuroimage; 2017 Aug; 156():1-13. PubMed ID: 28483721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fMRI-EEG mismatches in cortical current density estimation integrating fMRI and EEG: a simulation study.
    Liu Z; Kecman F; He B
    Clin Neurophysiol; 2006 Jul; 117(7):1610-22. PubMed ID: 16765085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
    Kim E; Park H
    Neurosci Bull; 2017 Feb; 33(1):41-52. PubMed ID: 27838826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2015 Dec; 256():127-40. PubMed ID: 26327319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Likelihood-based population independent component analysis.
    Eloyan A; Crainiceanu CM; Caffo BS
    Biostatistics; 2013 Jul; 14(3):514-27. PubMed ID: 23314416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint sparse representation of brain activity patterns in multi-task fMRI data.
    Ramezani M; Marble K; Trang H; Johnsrude IS; Abolmaesumi P
    IEEE Trans Med Imaging; 2015 Jan; 34(1):2-12. PubMed ID: 25073167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.