These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31725410)

  • 1. Miniaturized fractal optical nanoantennas defined by focused helium ion beam milling.
    Seitl L; Laible F; Dickreuter S; Gollmer DA; Kern DP; Fleischer M
    Nanotechnology; 2020 Feb; 31(7):075301. PubMed ID: 31725410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
    Kollmann H; Piao X; Esmann M; Becker SF; Hou D; Huynh C; Kautschor LO; Bösker G; Vieker H; Beyer A; Gölzhäuser A; Park N; Vogelgesang R; Silies M; Lienau C
    Nano Lett; 2014 Aug; 14(8):4778-84. PubMed ID: 25051422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps.
    Scholder O; Jefimovs K; Shorubalko I; Hafner C; Sennhauser U; Bona GL
    Nanotechnology; 2013 Oct; 24(39):395301. PubMed ID: 24013454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-effective strategies for the fabrication of poly- and single-crystalline gold nano-structures by focused helium ion beam milling.
    Laible F; Dreser C; Kern DP; Fleischer M
    Nanotechnology; 2019 Jun; 30(23):235302. PubMed ID: 30907377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas.
    Cakmakyapan S; Cinel NA; Cakmak AO; Ozbay E
    Opt Express; 2014 Aug; 22(16):19504-12. PubMed ID: 25321033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering reduction at near-infrared frequencies using plasmonic nanostructures.
    Tamma VA; Cui Y; Park W
    Opt Express; 2013 Jan; 21(1):1041-56. PubMed ID: 23388998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement.
    Flauraud V; Regmi R; Winkler PM; Alexander DT; Rigneault H; van Hulst NF; García-Parajo MF; Wenger J; Brugger J
    Nano Lett; 2017 Mar; 17(3):1703-1710. PubMed ID: 28182429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
    Chen Y; Bi K; Wang Q; Zheng M; Liu Q; Han Y; Yang J; Chang S; Zhang G; Duan H
    ACS Nano; 2016 Dec; 10(12):11228-11236. PubMed ID: 28024375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling.
    Wang Y; Abb M; Boden SA; Aizpurua J; de Groot CH; Muskens OL
    Nano Lett; 2013; 13(11):5647-53. PubMed ID: 24127754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanoantenna design and fabrication based on evolutionary optimization.
    Feichtner T; Selig O; Hecht B
    Opt Express; 2017 May; 25(10):10828-10842. PubMed ID: 28788771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-antennas with decoupled transparent leads for optoelectronic studies.
    Sommer M; Laible F; Braun K; Goschurny T; Meixner AJ; Fleischer M
    Nanotechnology; 2024 Mar; 35(21):. PubMed ID: 38456537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve.
    Wang Y; Boden SA; Bagnall DM; Rutt HN; de Groot CH
    Nanotechnology; 2012 Oct; 23(39):395302. PubMed ID: 22972003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas.
    Casadei A; Pecora EF; Trevino J; Forestiere C; Rüffer D; Russo-Averchi E; Matteini F; Tutuncuoglu G; Heiss M; Fontcuberta i Morral A; Dal Negro L
    Nano Lett; 2014 May; 14(5):2271-8. PubMed ID: 24742076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct visualization of beam-resist interaction volume for sub-nanometer helium ion beam-lithography.
    Deng Y; Zhuang X; Wang W; Gu R; He D; Wang L; Cheng X
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34198269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable nanoantennas using electron-beam manipulation.
    Roxworthy BJ; Bhuiya AM; Yu X; Chow EK; Toussaint KC
    Nat Commun; 2014 Jul; 5():4427. PubMed ID: 25020189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties.
    Wissert MD; Schell AW; Ilin KS; Siegel M; Eisler HJ
    Nanotechnology; 2009 Oct; 20(42):425203. PubMed ID: 19779233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters.
    Maraghechi P; Elezzabi AY
    Opt Express; 2010 Dec; 18(26):27336-45. PubMed ID: 21197012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna.
    Dey D; Kohoutek J; Gelfand RM; Bonakdar A; Mohseni H
    Opt Lett; 2010 Aug; 35(16):2783-5. PubMed ID: 20717456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas.
    Chen WL; Lin FC; Lee YY; Li FC; Chang YM; Huang JS
    ACS Nano; 2014 Sep; 8(9):9053-62. PubMed ID: 25207747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.