These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Therapeutic Efficacy of Combined JAK1/2, Pan-PIM, and CDK4/6 Inhibition in Myeloproliferative Neoplasms. Rampal RK; Pinzon-Ortiz M; Somasundara AVH; Durham B; Koche R; Spitzer B; Mowla S; Krishnan A; Li B; An W; Derkach A; Devlin S; Rong X; Longmire T; Eisman SE; Cordner K; Whitfield JT; Vanasse G; Cao ZA; Levine RL Clin Cancer Res; 2021 Jun; 27(12):3456-3468. PubMed ID: 33782031 [TBL] [Abstract][Full Text] [Related]
9. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Mascarenhas J; Mughal TI; Verstovsek S Curr Med Chem; 2012; 19(26):4399-413. PubMed ID: 22830345 [TBL] [Abstract][Full Text] [Related]
10. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Quintás-Cardama A; Vaddi K; Liu P; Manshouri T; Li J; Scherle PA; Caulder E; Wen X; Li Y; Waeltz P; Rupar M; Burn T; Lo Y; Kelley J; Covington M; Shepard S; Rodgers JD; Haley P; Kantarjian H; Fridman JS; Verstovsek S Blood; 2010 Apr; 115(15):3109-17. PubMed ID: 20130243 [TBL] [Abstract][Full Text] [Related]
11. Crizotinib Has Preclinical Efficacy in Philadelphia-Negative Myeloproliferative Neoplasms. Gurska LM; Okabe R; Schurer A; Tong MM; Soto M; Choi D; Ames K; Glushakow-Smith S; Montoya A; Tein E; Miles LA; Cheng H; Hankey-Giblin P; Levine RL; Goel S; Halmos B; Gritsman K Clin Cancer Res; 2023 Mar; 29(5):943-956. PubMed ID: 36537918 [TBL] [Abstract][Full Text] [Related]
12. Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors. Choong ML; Pecquet C; Pendharkar V; Diaconu CC; Yong JW; Tai SJ; Wang SF; Defour JP; Sangthongpitag K; Villeval JL; Vainchenker W; Constantinescu SN; Lee MA J Cell Mol Med; 2013 Nov; 17(11):1397-409. PubMed ID: 24251790 [TBL] [Abstract][Full Text] [Related]
13. Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Nieborowska-Skorska M; Maifrede S; Dasgupta Y; Sullivan K; Flis S; Le BV; Solecka M; Belyaeva EA; Kubovcakova L; Nawrocki M; Kirschner M; Zhao H; Prchal JT; Piwocka K; Moliterno AR; Wasik M; Koschmieder S; Green TR; Skoda RC; Skorski T Blood; 2017 Dec; 130(26):2848-2859. PubMed ID: 29042365 [TBL] [Abstract][Full Text] [Related]
14. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Bartalucci N; Guglielmelli P; Vannucchi AM Clin Lymphoma Myeloma Leuk; 2013 Sep; 13 Suppl 2():S307-9. PubMed ID: 24290217 [TBL] [Abstract][Full Text] [Related]
15. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms. Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936 [TBL] [Abstract][Full Text] [Related]
17. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. Hobbs GS; Rozelle S; Mullally A Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391 [TBL] [Abstract][Full Text] [Related]
18. Mathematical modelling of stem and progenitor cell dynamics during ruxolitinib treatment of patients with myeloproliferative neoplasms. Boklund TI; Snyder J; Gudmand-Hoeyer J; Larsen MK; Knudsen TA; Eickhardt-Dalbøge CS; Skov V; Kjær L; Hasselbalch HC; Andersen M; Ottesen JT; Stiehl T Front Immunol; 2024; 15():1384509. PubMed ID: 38846951 [TBL] [Abstract][Full Text] [Related]
19. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals. Zacharaki D; Ghazanfari R; Li H; Lim HC; Scheding S Eur J Haematol; 2018 Jul; 101(1):57-67. PubMed ID: 29645296 [TBL] [Abstract][Full Text] [Related]