These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31726064)

  • 21. Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors.
    Jones R; Kulkarni MA; Davidson TMV; ; Talbot B
    PLoS One; 2020; 15(2):e0220753. PubMed ID: 32027652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Globe-Trotting
    Lwande OW; Obanda V; Lindström A; Ahlm C; Evander M; Näslund J; Bucht G
    Vector Borne Zoonotic Dis; 2020 Feb; 20(2):71-81. PubMed ID: 31556813
    [No Abstract]   [Full Text] [Related]  

  • 23. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence.
    Houé V; Bonizzoni M; Failloux AB
    Emerg Microbes Infect; 2019; 8(1):542-555. PubMed ID: 30938223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Urban Arboviruses Can Infect Wild Animals and Jump to Sylvatic Maintenance Cycles in South America.
    Figueiredo LTM
    Front Cell Infect Microbiol; 2019; 9():259. PubMed ID: 31380302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous circulation of zakat, dengue, and chikungunya viruses and their vertical co-transmission among Aedes aegypti.
    Teixeira AF; de Brito BB; Correia TML; Viana AIS; Carvalho JC; da Silva FAF; Santos MLC; da Silveira EA; Neto HPG; da Silva NMP; Rocha CVS; Pinheiro FD; Chaves BA; Monteiro WM; de Lacerda MVG; Secundino NFC; Pimenta PFP; de Melo FF
    Acta Trop; 2021 Mar; 215():105819. PubMed ID: 33406443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings.
    Pando-Robles V; Batista CV
    Vector Borne Zoonotic Dis; 2017 Jun; 17(6):361-375. PubMed ID: 28192064
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Castillo-Méndez M; Valverde-Garduño V
    Viral Immunol; 2020; 33(1):38-47. PubMed ID: 31738698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti.
    Alomar AA; Eastmond BH; Alto BW
    PLoS Negl Trop Dis; 2020 Nov; 14(11):e0008846. PubMed ID: 33201875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential Susceptibility and Innate Immune Response of
    Diop F; Alout H; Diagne CT; Bengue M; Baronti C; Hamel R; Talignani L; Liegeois F; Pompon J; Morales Vargas RE; Nougairède A; Missé D
    Viruses; 2019 Oct; 11(10):. PubMed ID: 31601017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Larval stress alters dengue virus susceptibility in Aedes aegypti (L.) adult females.
    Kang DS; Alcalay Y; Lovin DD; Cunningham JM; Eng MW; Chadee DD; Severson DW
    Acta Trop; 2017 Oct; 174():97-101. PubMed ID: 28648790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil.
    Paploski IA; Rodrigues MS; Mugabe VA; Kikuti M; Tavares AS; Reis MG; Kitron U; Ribeiro GS
    Parasit Vectors; 2016 Jul; 9(1):419. PubMed ID: 27464886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Large Scale Biorational Approach Using Bacillus thuringiensis israeliensis (Strain AM65-52) for Managing Aedes aegypti Populations to Prevent Dengue, Chikungunya and Zika Transmission.
    Pruszynski CA; Hribar LJ; Mickle R; Leal AL
    PLoS One; 2017; 12(2):e0170079. PubMed ID: 28199323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies.
    Barletta AB; Silva MC; Sorgine MH
    Parasit Vectors; 2012 Jul; 5():148. PubMed ID: 22827926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance.
    Soares-da-Silva J; Queirós SG; de Aguiar JS; Viana JL; Neta MDRAV; da Silva MC; Pinheiro VCS; Polanczyk RA; Carvalho-Zilse GA; Tadei WP
    Acta Trop; 2017 Dec; 176():197-205. PubMed ID: 28823909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic effect of Lysinibacillus sphaericus and glyphosate on temephos-resistant larvae of Aedes aegypti.
    Bernal L; Dussán J
    Parasit Vectors; 2020 Feb; 13(1):68. PubMed ID: 32051012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells.
    Parry R; Asgari S
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wolbachia and arbovirus inhibition in mosquitoes.
    Sinkins SP
    Future Microbiol; 2013 Oct; 8(10):1249-56. PubMed ID: 24059916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the Potential Interactions between Cellular miRNA and Arboviral Genomic RNA in the Yellow Fever Mosquito,
    Yen PS; Chen CH; Sreenu V; Kohl A; Failloux AB
    Viruses; 2019 Jun; 11(6):. PubMed ID: 31185697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequential Infection of
    Magalhaes T; Robison A; Young MC; Black WC; Foy BD; Ebel GD; Rückert C
    Insects; 2018 Dec; 9(4):. PubMed ID: 30513725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti.
    Kim CH; Muturi EJ
    J Insect Physiol; 2013 Jun; 59(6):604-10. PubMed ID: 23562781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.