These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31726131)
1. De novo transcriptome and proteome analysis of Dictyophora indusiata fruiting bodies provides insights into the changes during morphological development. Wang J; Wen X; Yang B; Liu D; Li X; Geng F Int J Biol Macromol; 2020 Mar; 146():875-886. PubMed ID: 31726131 [TBL] [Abstract][Full Text] [Related]
2. Quantitative proteomic and metabolomic analysis of Dictyophora indusiata fruiting bodies during post-harvest morphological development. Wang J; Wen X; Zhang Y; Zou P; Cheng L; Gan R; Li X; Liu D; Geng F Food Chem; 2021 Mar; 339():127884. PubMed ID: 32858387 [TBL] [Abstract][Full Text] [Related]
3. Phosphoinositide signaling plays a key role in the regulation of cell wall reconstruction during the postharvest morphological development of Dictyophora indusiata. Geng F; Wen X; Xu Y; Zhang M; Zhou L; Liu D; Li X; Wang J Food Chem; 2021 Jun; 346():128890. PubMed ID: 33385914 [TBL] [Abstract][Full Text] [Related]
4. De novo transcriptome sequencing of Flammulina velutipes uncover candidate genes associated with cold-induced fruiting. Wu T; Ye Z; Guo L; Yang X; Lin J J Basic Microbiol; 2018 Aug; 58(8):698-703. PubMed ID: 29873407 [TBL] [Abstract][Full Text] [Related]
5. De novo transcriptomic analysis during Lentinula edodes fruiting body growth. Wang Y; Zeng X; Liu W Gene; 2018 Jan; 641():326-334. PubMed ID: 29066302 [TBL] [Abstract][Full Text] [Related]
6. Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis. Sakamoto Y; Nakade K; Sato S; Yoshida K; Miyazaki K; Natsume S; Konno N Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314725 [No Abstract] [Full Text] [Related]
7. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. Wang M; Gu B; Huang J; Jiang S; Chen Y; Yin Y; Pan Y; Yu G; Li Y; Wong BH; Liang Y; Sun H PLoS One; 2013; 8(2):e56686. PubMed ID: 23418592 [TBL] [Abstract][Full Text] [Related]
8. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. Yu GJ; Wang M; Huang J; Yin YL; Chen YJ; Jiang S; Jin YX; Lan XQ; Wong BH; Liang Y; Sun H PLoS One; 2012; 7(8):e44031. PubMed ID: 22952861 [TBL] [Abstract][Full Text] [Related]
9. Comparative Proteome Reveals Metabolic Changes during the Fruiting Process in Flammulina velutipes. Liu JY; Chang MC; Meng JL; Feng CP; Zhao H; Zhang ML J Agric Food Chem; 2017 Jun; 65(24):5091-5100. PubMed ID: 28570075 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of Glucose Regulates the Fruiting Body Formation in the Beech Culinary-Medicinal Mushroom, Hypsizygus marmoreus (Agaricomycetes). Zhang JJ; Chen H; Xie MY; Chen MJ; Hao HB; Wang H; Feng ZY Int J Med Mushrooms; 2017; 19(2):179-189. PubMed ID: 28436327 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of the developmental genes asm2, asm3, and spt3 required for fruiting body formation in the filamentous ascomycete Sordaria macrospora. Lütkenhaus R; Breuer J; Nowrousian M Genetics; 2021 Oct; 219(2):. PubMed ID: 34849873 [TBL] [Abstract][Full Text] [Related]
12. De novo assembly of Auricularia polytricha transcriptome using Illumina sequencing for gene discovery and SSR marker identification. Zhou Y; Chen L; Fan X; Bian Y PLoS One; 2014; 9(3):e91740. PubMed ID: 24626227 [TBL] [Abstract][Full Text] [Related]
13. Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Xie Y; Chang J; Kwan HS Fungal Genet Biol; 2020 Oct; 143():103432. PubMed ID: 32681999 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Song HY; Kim DH; Kim JM Sci Rep; 2018 Jun; 8(1):8983. PubMed ID: 29895888 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of genes associated with autolysis of Coprinus comatus. Guo HB; Zhang ZF; Wang JQ; Wang SY; Yang JK; Xing XY; Qi XJ; Yu XD Sci Rep; 2022 Feb; 12(1):2476. PubMed ID: 35169137 [TBL] [Abstract][Full Text] [Related]
16. Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display. Yamada M; Sakuraba S; Shibata K; Taguchi G; Inatomi S; Okazaki M; Shimosaka M FEMS Microbiol Lett; 2006 Jan; 254(1):165-72. PubMed ID: 16451195 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. Orban A; Weber A; Herzog R; Hennicke F; Rühl M BMC Genomics; 2021 May; 22(1):324. PubMed ID: 33947322 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome analysis on candidate genes associated with fruiting body growth and development in Ke S; Ding L; Niu X; Shan H; Song L; Xi Y; Feng J; Wei S; Liang Q PeerJ; 2023; 11():e16288. PubMed ID: 37904843 [No Abstract] [Full Text] [Related]
19. Transcriptomics Analysis of Primordium Formation in Ye D; Du F; Zou Y; Hu Q Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946812 [TBL] [Abstract][Full Text] [Related]
20. The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp. de Freitas Pereira M; Narvaes da Rocha Campos A; Anastacio TC; Morin E; Brommonschenkel SH; Martin F; Kohler A; Costa MD BMC Genomics; 2017 Feb; 18(1):157. PubMed ID: 28196466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]