These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31726436)

  • 1. Replica exchange dissipative particle dynamics method on threadlike micellar aqueous solutions.
    Kobayashi Y; Nomura K; Kaneko T; Arai N
    J Phys Condens Matter; 2020 Mar; 32(11):115901. PubMed ID: 31726436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles.
    Yamamoto S; Hyodo SA
    J Chem Phys; 2005 May; 122(20):204907. PubMed ID: 15945777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.
    Yamamori Y; Kitao A
    J Chem Phys; 2013 Oct; 139(14):145105. PubMed ID: 24116651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations.
    Mao R; Lee MT; Vishnyakov A; Neimark AV
    J Phys Chem B; 2015 Sep; 119(35):11673-83. PubMed ID: 26241704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous self-assembly process for threadlike micelles.
    Arai N; Yasuoka K; Masubuchi Y
    J Chem Phys; 2007 Jun; 126(24):244905. PubMed ID: 17614588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles: effects of sodium chloride and sodium salicylate salts.
    Wang Z; Larson RG
    J Phys Chem B; 2009 Oct; 113(42):13697-710. PubMed ID: 19476369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the Reverse Micellar Extraction of Papain Using Dissipative Particle Dynamics Simulation.
    Lin M; Yu T; Wan J; Cao X
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1338-1346. PubMed ID: 27873058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations.
    Vishnyakov A; Lee MT; Neimark AV
    J Phys Chem Lett; 2013 Mar; 4(5):797-802. PubMed ID: 26281935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipative particle dynamics study on self-assembled platycodin structures: the potential biocarriers for drug delivery.
    Dai X; Ding H; Yin Q; Wan G; Shi X; Qiao Y
    J Mol Graph Model; 2015 Apr; 57():20-6. PubMed ID: 25622131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micellization behavior of coarse grained surfactant models.
    Sanders SA; Panagiotopoulos AZ
    J Chem Phys; 2010 Mar; 132(11):114902. PubMed ID: 20331315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation.
    Ahmadi M; Aliabadian E; Liu B; Lei X; Khalilpoorkordi P; Hou Q; Wang Y; Chen Z
    Adv Colloid Interface Sci; 2022 Nov; 309():102774. PubMed ID: 36152373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained molecular dynamics study on the self-assembly of Gemini surfactants: the effect of spacer length.
    Wang P; Pei S; Wang M; Yan Y; Sun X; Zhang J
    Phys Chem Chem Phys; 2017 Feb; 19(6):4462-4468. PubMed ID: 28120957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipative particle dynamics simulation study on vesicles self-assembled from amphiphilic hyperbranched multiarm copolymers.
    Wang Y; Li B; Jin H; Zhou Y; Lu Z; Yan D
    Chem Asian J; 2014 Aug; 9(8):2281-8. PubMed ID: 24850132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation of Chemical Structure into Dissipative Particle Dynamics Parameters for Simulation of Surfactant Self-Assembly.
    Lavagnini E; Cook JL; Warren PB; Hunter CA
    J Phys Chem B; 2021 Apr; 125(15):3942-3952. PubMed ID: 33848165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing the phase diagram of sodium laurylethoxysulfate using dissipative particle dynamics.
    Panoukidou M; Wand CR; Del Regno A; Anderson RL; Carbone P
    J Colloid Interface Sci; 2019 Dec; 557():34-44. PubMed ID: 31514092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents.
    Tan H; Yu C; Lu Z; Zhou Y; Yan D
    Soft Matter; 2017 Sep; 13(36):6178-6188. PubMed ID: 28798969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametrization of Chain Molecules in Dissipative Particle Dynamics.
    Lee MT; Mao R; Vishnyakov A; Neimark AV
    J Phys Chem B; 2016 Jun; 120(22):4980-91. PubMed ID: 27167160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates.
    Mai Z; Couallier E; Rakib M; Rousseau B
    J Chem Phys; 2014 May; 140(20):204902. PubMed ID: 24880320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Surface Site Interaction Point Method for Dissipative Particle Dynamics Parametrization: Application to Alkyl Ethoxylate Surfactant Self-Assembly.
    Lavagnini E; Cook JL; Warren PB; Williamson MJ; Hunter CA
    J Phys Chem B; 2020 Jun; 124(24):5047-5055. PubMed ID: 32510951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.