These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31726518)
1. Tuning down the environmental interests of organoclays for emerging pollutants: Pharmaceuticals in presence of electrolytes. Guégan R; De Oliveira T; Le Gleuher J; Sugahara Y Chemosphere; 2020 Jan; 239():124730. PubMed ID: 31726518 [TBL] [Abstract][Full Text] [Related]
2. Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. De Oliveira T; Boussafir M; Fougère L; Destandau E; Sugahara Y; Guégan R Chemosphere; 2020 Nov; 259():127480. PubMed ID: 32634722 [TBL] [Abstract][Full Text] [Related]
3. Colloids as a sink for certain pharmaceuticals in the aquatic environment. Maskaoui K; Zhou JL Environ Sci Pollut Res Int; 2010 May; 17(4):898-907. PubMed ID: 20024675 [TBL] [Abstract][Full Text] [Related]
4. Competitive Association of Antibiotics with a Clay Mineral and Organoclay Derivatives as a Control of Their Lifetimes in the Environment. De Oliveira T; Fernandez E; Fougère L; Destandau E; Boussafir M; Sohmiya M; Sugahara Y; Guégan R ACS Omega; 2018 Nov; 3(11):15332-15342. PubMed ID: 30556002 [TBL] [Abstract][Full Text] [Related]
5. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material. Hari AC; Paruchuri RA; Sabatini DA; Kibbey TC Environ Sci Technol; 2005 Apr; 39(8):2592-8. PubMed ID: 15884354 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types. Kočárek M; Kodešová R; Vondráčková L; Golovko O; Fér M; Klement A; Nikodem A; Jakšík O; Grabic R Environ Pollut; 2016 Nov; 218():563-573. PubMed ID: 27460901 [TBL] [Abstract][Full Text] [Related]
7. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Kodešová R; Kočárek M; Klement A; Golovko O; Koba O; Fér M; Nikodem A; Vondráčková L; Jakšík O; Grabic R Sci Total Environ; 2016 Feb; 544():369-81. PubMed ID: 26657382 [TBL] [Abstract][Full Text] [Related]
8. Pharmaceuticals' sorptions relative to properties of thirteen different soils. Kodešová R; Grabic R; Kočárek M; Klement A; Golovko O; Fér M; Nikodem A; Jakšík O Sci Total Environ; 2015 Apr; 511():435-43. PubMed ID: 25569579 [TBL] [Abstract][Full Text] [Related]
9. Coupled Organoclay/Micelle Action for the Adsorption of Diclofenac. De Oliveira T; Guégan R Environ Sci Technol; 2016 Sep; 50(18):10209-15. PubMed ID: 27571028 [TBL] [Abstract][Full Text] [Related]
10. Nonionic organoclay: a 'Swiss Army knife' for the adsorption of organic micro-pollutants? Guégan R; Giovanela M; Warmont F; Motelica-Heino M J Colloid Interface Sci; 2015 Jan; 437():71-79. PubMed ID: 25313469 [TBL] [Abstract][Full Text] [Related]
11. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction. Park J; Cho KH; Lee E; Lee S; Cho J Sci Total Environ; 2018 Sep; 635():1345-1350. PubMed ID: 29710587 [TBL] [Abstract][Full Text] [Related]
12. Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce. Bhalsod GD; Chuang YH; Jeon S; Gui W; Li H; Ryser ET; Guber AK; Zhang W J Agric Food Chem; 2018 Jan; 66(4):822-830. PubMed ID: 29293328 [TBL] [Abstract][Full Text] [Related]
13. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Martínez-Hernández V; Meffe R; Herrera López S; de Bustamante I Sci Total Environ; 2016 Jul; 559():232-241. PubMed ID: 27070381 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous scavenging of persistent pharmaceuticals with different charges by activated carbon fiber from aqueous environments. Zhao Y; Cho CW; Wang D; Choi JW; Lin S; Yun YS Chemosphere; 2020 May; 247():125909. PubMed ID: 31972492 [TBL] [Abstract][Full Text] [Related]
15. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Fekadu S; Alemayehu E; Dewil R; Van der Bruggen B Sci Total Environ; 2019 Mar; 654():324-337. PubMed ID: 30448654 [TBL] [Abstract][Full Text] [Related]
16. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Gibson R; Durán-Álvarez JC; Estrada KL; Chávez A; Jiménez Cisneros B Chemosphere; 2010 Dec; 81(11):1437-45. PubMed ID: 20933253 [TBL] [Abstract][Full Text] [Related]
17. Fate and mobility of pharmaceuticals in solid matrices. Drillia P; Stamatelatou K; Lyberatos G Chemosphere; 2005 Aug; 60(8):1034-44. PubMed ID: 15993150 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. De Oliveira T; Guégan R; Thiebault T; Milbeau CL; Muller F; Teixeira V; Giovanela M; Boussafir M J Hazard Mater; 2017 Feb; 323(Pt A):558-566. PubMed ID: 27180207 [TBL] [Abstract][Full Text] [Related]
19. Characterizing redox conditions and monitoring attenuation of selected pharmaceuticals during artificial recharge through a reactive layer. Valhondo C; Carrera J; Ayora C; Tubau I; Martinez-Landa L; Nödler K; Licha T Sci Total Environ; 2015 Apr; 512-513():240-250. PubMed ID: 25625636 [TBL] [Abstract][Full Text] [Related]
20. Investigating natural attenuation of pharmaceuticals through unsaturated column tests. Martínez-Hernández V; Meffe R; Kohfahl C; de Bustamante I Chemosphere; 2017 Jun; 177():292-302. PubMed ID: 28314234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]