These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31726540)

  • 1. Environmental impacts of copper‑indium‑gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition.
    Stamford L; Azapagic A
    Sci Total Environ; 2019 Oct; 688():1092-1101. PubMed ID: 31726540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on life cycle analysis of solar technologies with emphasis on production in India.
    Singh S; Dhar A; Powar S
    J Environ Manage; 2024 Jul; 366():121755. PubMed ID: 39003903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method.
    Rashedi A; Khanam T
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29075-29090. PubMed ID: 32424748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term.
    Bergesen JD; Heath GA; Gibon T; Suh S
    Environ Sci Technol; 2014 Aug; 48(16):9834-43. PubMed ID: 24984196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A qualitative Design and optimization of CIGS-based Solar Cells with Sn
    Rahman MF; Hasan MK; Chowdhury M; Islam MR; Rahman MH; Rahman MA; Al Ahmed SR; Ismail ABM; Amami M; Hossain MK; Al-Hazmi GAAM
    Heliyon; 2023 Dec; 9(12):e22866. PubMed ID: 38125486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.
    Eisenberg DA; Yu M; Lam CW; Ogunseitan OA; Schoenung JM
    J Hazard Mater; 2013 Sep; 260():534-42. PubMed ID: 23811631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Efficiency Cu(In,Ga)Se₂ Thin Film Solar Cells Using ZnS and CdS Buffer Layers.
    Jun BM; Kim G; Kim E; Kim H; Lee DJ; Kim HS; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1814-1819. PubMed ID: 30469273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.
    Celik I; Mason BE; Phillips AB; Heben MJ; Apul D
    Environ Sci Technol; 2017 Apr; 51(8):4722-4732. PubMed ID: 28234471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significantly Enhanced Detectivity of CIGS Broadband High-Speed Photodetectors by Grain Size Control and ALD-Al
    Yuan Y; Zhang L; Yan G; Cen G; Liu Y; Zeng L; Zeng C; Zhao C; Hong R; Mai W
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20157-20166. PubMed ID: 31070353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels.
    Maani T; Celik I; Heben MJ; Ellingson RJ; Apul D
    Sci Total Environ; 2020 Sep; 735():138827. PubMed ID: 32464407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ALD-Zn
    Löckinger J; Nishiwaki S; Andres C; Erni R; Rossell MD; Romanyuk YE; Buecheler S; Tiwari AN
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43603-43609. PubMed ID: 30462473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.
    Xu M; Wachters AJ; van Deelen J; Mourad MC; Buskens PJ
    Opt Express; 2014 Mar; 22 Suppl 2():A425-37. PubMed ID: 24922252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering.
    Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards sustainable photovoltaics: the search for new materials.
    Peter LM
    Philos Trans A Math Phys Eng Sci; 2011 May; 369(1942):1840-56. PubMed ID: 21464075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries.
    Üçtuğ FG; Azapagic A
    Sci Total Environ; 2018 Dec; 643():1579-1589. PubMed ID: 30189574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect Analysis of Solution-Based Process CIGS Thin-Film Solar Cells Using Technology Computer-Aided Design.
    Lee S; Lee J; Lee Y; Park GS; Kim MK; Min BK; Shin M
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6601-6608. PubMed ID: 31026998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.
    Brun NR; Wehrli B; Fent K
    Sci Total Environ; 2016 Feb; 543(Pt A):703-714. PubMed ID: 26615488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se
    Hwang S; Larina L; Lee H; Kim S; Choi KS; Jeon C; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20920-20928. PubMed ID: 29806770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of photovoltaic electricity production by mono-crystalline solar systems: a case study in Canada.
    Alam E; Xu X
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27422-27440. PubMed ID: 36383321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emissions from photovoltaic life cycles.
    Fthenakis VM; Kim HC; Alsema E
    Environ Sci Technol; 2008 Mar; 42(6):2168-74. PubMed ID: 18409654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.