These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31726745)

  • 1. Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton.
    Badesa FJ; Diez JA; Catalan JM; Trigili E; Cordella F; Nann M; Crea S; Soekadar SR; Zollo L; Vitiello N; Garcia-Aracil N
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR; Witkowski M; Vitiello N; Birbaumer N
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs).
    Catalán JM; Trigili E; Nann M; Blanco-Ivorra A; Lauretti C; Cordella F; Ivorra E; Armstrong E; Crea S; Alcañiz M; Zollo L; Soekadar SR; Vitiello N; García-Aracil N
    J Neuroeng Rehabil; 2023 May; 20(1):61. PubMed ID: 37149621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living.
    Crea S; Nann M; Trigili E; Cordella F; Baldoni A; Badesa FJ; Catalán JM; Zollo L; Vitiello N; Aracil NG; Soekadar SR
    Sci Rep; 2018 Jul; 8(1):10823. PubMed ID: 30018334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System.
    Huang Q; Zhang Z; Yu T; He S; Li Y
    Front Neurosci; 2019; 13():1243. PubMed ID: 31824245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction.
    Nann M; Peekhaus N; Angerhöfer C; Soekadar SR
    Front Hum Neurosci; 2020; 14():580105. PubMed ID: 33362490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and sensitivity to change in assistive hand exoskeleton application.
    Angerhöfer C; Vermehren M; Colucci A; Nann M; Koßmehl P; Niedeggen A; Kim WS; Chang WK; Paik NJ; Hömberg V; Soekadar SR
    J Neuroeng Rehabil; 2023 Jan; 20(1):17. PubMed ID: 36707885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the Raw National Aeronautics and Space Administration Task Load Index (NASA-TLX) Questionnaire to Assess Perceived Workload in Patient Monitoring Tasks: Pooled Analysis Study Using Mixed Models.
    Said S; Gozdzik M; Roche TR; Braun J; Rössler J; Kaserer A; Spahn DR; Nöthiger CB; Tscholl DW
    J Med Internet Res; 2020 Sep; 22(9):e19472. PubMed ID: 32780712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and Cognitive Load Effects Due to a Powered Lower-Body Exoskeleton.
    Bequette B; Norton A; Jones E; Stirling L
    Hum Factors; 2020 May; 62(3):411-423. PubMed ID: 32202434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Technologies for Mental Workload, Stress, and Emotional State Assessment during Working-Like Tasks: A Comparison with Laboratory Technologies.
    Giorgi A; Ronca V; Vozzi A; Sciaraffa N; di Florio A; Tamborra L; Simonetti I; Aricò P; Di Flumeri G; Rossi D; Borghini G
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation.
    Looned R; Webb J; Xiao ZG; Menon C
    J Neuroeng Rehabil; 2014 Apr; 11():51. PubMed ID: 24708603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.
    Mouraviev V; Klein M; Schommer E; Thiel DD; Samavedi S; Kumar A; Leveillee RJ; Thomas R; Pow-Sang JM; Su LM; Mui E; Smith R; Patel V
    J Robot Surg; 2016 Mar; 10(1):49-56. PubMed ID: 26753619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.
    Gonzalez J; Soma H; Sekine M; Yu W
    J Neuroeng Rehabil; 2012 Jun; 9():33. PubMed ID: 22682425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI).
    Asgher U; Khan MJ; Asif Nizami MH; Khalil K; Ahmad R; Ayaz Y; Naseer N
    Front Neurorobot; 2021; 15():605751. PubMed ID: 33815084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.