BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31726754)

  • 1. Key Factors for A One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid.
    Gottschalk J; Zaun H; Eisele A; Kuballa J; Elling L
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive Synthesis of High-Molecular-Weight Hyaluronic Acid with Immobilized Enzyme Cascades.
    Gottschalk J; Aßmann M; Kuballa J; Elling L
    ChemSusChem; 2022 May; 15(9):e202101071. PubMed ID: 34143936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid.
    Mandawe J; Infanzon B; Eisele A; Zaun H; Kuballa J; Davari MD; Jakob F; Elling L; Schwaneberg U
    Chembiochem; 2018 Jul; 19(13):1414-1423. PubMed ID: 29603528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of UDP-glucose dehydrogenase from Pasteurella multocida CVCC 408 and its application in hyaluronic acid biosynthesis.
    Chu X; Han J; Guo D; Fu Z; Liu W; Tao Y
    Enzyme Microb Technol; 2016 Apr; 85():64-70. PubMed ID: 26920483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase.
    DeAngelis PL
    Biochemistry; 1996 Jul; 35(30):9768-71. PubMed ID: 8703949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel β1,4 N-acetylglucosaminyltransferase in de novo enzymatic synthesis of hyaluronic acid oligosaccharides.
    Sun JY; Deng JQ; Du RR; Xin SY; Cao YL; Lu Z; Guo XP; Wang FS; Sheng JZ
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5119-5129. PubMed ID: 37405432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA.
    Guo Y; Fang J; Li T; Li X; Ma C; Wang X; Wang PG; Li L
    Carbohydr Res; 2015 Jun; 411():1-5. PubMed ID: 25942062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant synthesis of hyaluronan by Agrobacterium sp.
    Mao Z; Chen RR
    Biotechnol Prog; 2007; 23(5):1038-42. PubMed ID: 17705506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end.
    Tlapak-Simmons VL; Baron CA; Gotschall R; Haque D; Canfield WM; Weigel PH
    J Biol Chem; 2005 Apr; 280(13):13012-8. PubMed ID: 15668242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase.
    DeAngelis PL
    J Biol Chem; 1999 Sep; 274(37):26557-62. PubMed ID: 10473619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative continuous assay for hyaluronan synthase.
    Krupa JC; Shaya D; Chi L; Linhardt RJ; Cygler M; Withers SG; Mort JS
    Anal Biochem; 2007 Feb; 361(2):218-25. PubMed ID: 17173853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end.
    Weigel PH; Baggenstoss BA; Washburn JL
    Glycobiology; 2017 Jun; 27(6):536-554. PubMed ID: 28138013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida.
    Jing W; DeAngelis PL
    Glycobiology; 2003 Oct; 13(10):661-71. PubMed ID: 12799342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymological characterization of recombinant xenopus DG42, a vertebrate hyaluronan synthase.
    Pummill PE; Achyuthan AM; DeAngelis PL
    J Biol Chem; 1998 Feb; 273(9):4976-81. PubMed ID: 9478944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical elements of oligosaccharide acceptor substrates for the Pasteurella multocida hyaluronan synthase.
    Williams KJ; Halkes KM; Kamerling JP; DeAngelis PL
    J Biol Chem; 2006 Mar; 281(9):5391-7. PubMed ID: 16361253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of hyaluronate synthesis.
    Prehm P
    Biochem J; 1985 Feb; 225(3):699-705. PubMed ID: 2983681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights.
    Jia Y; Zhu J; Chen X; Tang D; Su D; Yao W; Gao X
    Bioresour Technol; 2013 Mar; 132():427-31. PubMed ID: 23433979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis.
    Vigetti D; Deleonibus S; Moretto P; Karousou E; Viola M; Bartolini B; Hascall VC; Tammi M; De Luca G; Passi A
    J Biol Chem; 2012 Oct; 287(42):35544-35555. PubMed ID: 22887999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide.
    Jing W; DeAngelis PL
    Glycobiology; 2000 Sep; 10(9):883-9. PubMed ID: 10988250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts.
    Otto NJ; Green DE; Masuko S; Mayer A; Tanner ME; Linhardt RJ; DeAngelis PL
    J Biol Chem; 2012 Mar; 287(10):7203-12. PubMed ID: 22235128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.