BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31726828)

  • 1. An Ultrasensitivity Fluorescent Probe Based on the ICT-FRET Dual Mechanisms for Imaging β-Galactosidase in Vitro and ex Vivo.
    Kong X; Li M; Dong B; Yin Y; Song W; Lin W
    Anal Chem; 2019 Dec; 91(24):15591-15598. PubMed ID: 31726828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe.
    Kim EJ; Kumar R; Sharma A; Yoon B; Kim HM; Lee H; Hong KS; Kim JS
    Biomaterials; 2017 Apr; 122():83-90. PubMed ID: 28110172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase.
    Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X
    Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe.
    Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH
    J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models.
    Luo W; Diao Q; Lv L; Li T; Ma P; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124411. PubMed ID: 38728851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo.
    Asanuma D; Sakabe M; Kamiya M; Yamamoto K; Hiratake J; Ogawa M; Kosaka N; Choyke PL; Nagano T; Kobayashi H; Urano Y
    Nat Commun; 2015 Mar; 6():6463. PubMed ID: 25765713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescent probe for specific detection of β-galactosidase in living cells and tissues based on ESIPT mechanism.
    Li Z; Ren M; Zhao Y; Song W; Cheng J; Lin W
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119446. PubMed ID: 33465572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activatable Formation of Emissive Excimers for Highly Selective Detection of β-Galactosidase.
    Li Y; Ning L; Yuan F; Zhang T; Zhang J; Xu Z; Yang XF
    Anal Chem; 2020 Apr; 92(8):5733-5740. PubMed ID: 32193934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel fluorescent probe for rapid and ratiometric detection of β-galactosidase and live cell imaging.
    Chen X; Zhang X; Ma X; Zhang Y; Gao G; Liu J; Hou S
    Talanta; 2019 Jan; 192():308-313. PubMed ID: 30348394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe.
    Solomon M; Guo K; Sudlow GP; Berezin MY; Edwards WB; Achilefu S; Akers WJ
    J Biomed Opt; 2011 Jun; 16(6):066019. PubMed ID: 21721820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe.
    Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH
    Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric fluorescent probes with a self-immolative spacer for real-time detection of β-galactosidase and imaging in living cells.
    Chen X; Ma X; Zhang Y; Gao G; Liu J; Zhang X; Wang M; Hou S
    Anal Chim Acta; 2018 Nov; 1033():193-198. PubMed ID: 30172326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging.
    Fan F; Zhang L; Zhou X; Mu F; Shi G
    J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel fluorescent probe for the ratiometric detection of β-galactosidase and its application in fruit.
    Li Y; Duan N; Wu X; Yang S; Tian H; Sun B
    Food Chem; 2020 Oct; 328():127112. PubMed ID: 32470778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET-based mitochondria-targetable dual-excitation ratiometric fluorescent probe for monitoring hydrogen sulfide in living cells.
    Yuan L; Zuo QP
    Chem Asian J; 2014 Jun; 9(6):1544-9. PubMed ID: 24692234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Infrared Fluorescent Probe with Remarkable Large Stokes Shift and Favorable Water Solubility for Real-Time Tracking Leucine Aminopeptidase in Living Cells and In Vivo.
    Zhang W; Liu F; Zhang C; Luo JG; Luo J; Yu W; Kong L
    Anal Chem; 2017 Nov; 89(22):12319-12326. PubMed ID: 29048879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared fluorescent probe with a large Stokes shift for bioimaging of β-galactosidase in living cells and zebrafish develop at different period.
    Chen S; Niu K; Wang L; Wu Y; Hou S; Ma X
    Anal Chim Acta; 2022 Nov; 1232():340459. PubMed ID: 36257743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission.
    Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X
    Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Transfer Systems for In Vivo Tracking.
    Neri R; Yapa AS; Bossmann SH
    Methods Mol Biol; 2020; 2126():45-55. PubMed ID: 32112378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.