BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

778 related articles for article (PubMed ID: 31726969)

  • 1. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.
    Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S
    J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis approaches to address treatment nonadherence in pragmatic trials with point-treatment settings: a simulation study.
    Hossain MB; Mosquera L; Karim ME
    BMC Med Res Methodol; 2022 Feb; 22(1):46. PubMed ID: 35172746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the performance of two-stage residual inclusion methods when using physician's prescribing preference as an instrumental variable: unmeasured confounding and noncollapsibility.
    Zhang L; Lewsey J
    J Comp Eff Res; 2024 May; 13(5):e230085. PubMed ID: 38567965
    [No Abstract]   [Full Text] [Related]  

  • 8. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization.
    Dai JY; Chan KC; Hsu L
    Stat Med; 2014 Oct; 33(23):3986-4007. PubMed ID: 24863158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumental variable methods for causal inference.
    Baiocchi M; Cheng J; Small DS
    Stat Med; 2014 Jun; 33(13):2297-340. PubMed ID: 24599889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias in estimating the causal hazard ratio when using two-stage instrumental variable methods.
    Wan F; Small D; Bekelman JE; Mitra N
    Stat Med; 2015 Jun; 34(14):2235-65. PubMed ID: 25800789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.
    Pfeiffer RM; Riedl R
    Stat Med; 2015 Aug; 34(18):2618-35. PubMed ID: 25781579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumental variable estimation of truncated local average treatment effects.
    Choi BY
    PLoS One; 2021; 16(4):e0249642. PubMed ID: 33819276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bias testing, bias correction, and confounder selection using an instrumental variable model.
    Yeob Choi B; Fine JP; Alan Brookhart M
    Stat Med; 2020 Dec; 39(29):4386-4404. PubMed ID: 32854161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing unmeasured confounders in cohort studies: Instrumental variable method for a time-fixed exposure on an outcome trajectory.
    Le Bourdonnec K; Samieri C; Tzourio C; Mura T; Mishra A; Trégouët DA; Proust-Lima C
    Biom J; 2024 Jan; 66(1):e2200358. PubMed ID: 38098309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Random Forests for Causal Inference under Cluster-Level Unmeasured Confounding.
    Suk Y; Kang H
    Multivariate Behav Res; 2023; 58(2):408-440. PubMed ID: 35103508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instrumental variable analysis in the presence of unmeasured confounding.
    Zhang Z; Uddin MJ; Cheng J; Huang T
    Ann Transl Med; 2018 May; 6(10):182. PubMed ID: 29951504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating unmeasured confounding in cross-sectional studies: evaluating instrumental-variable and Heckman selection models.
    DeMaris A
    Psychol Methods; 2014 Sep; 19(3):380-97. PubMed ID: 25110904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.