These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31726977)

  • 1. The assessment of efficient representation of drug features using deep learning for drug repositioning.
    Moridi M; Ghadirinia M; Sharifi-Zarchi A; Zare-Mirakabad F
    BMC Bioinformatics; 2019 Nov; 20(1):577. PubMed ID: 31726977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. deepDR: a network-based deep learning approach to in silico drug repositioning.
    Zeng X; Zhu S; Liu X; Zhou Y; Nussinov R; Cheng F
    Bioinformatics; 2019 Dec; 35(24):5191-5198. PubMed ID: 31116390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico drug repositioning using deep learning and comprehensive similarity measures.
    Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation.
    Yasir M; Park J; Han ET; Park WS; Han JH; Chun W
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning.
    Wang R; Li S; Cheng L; Wong MH; Leung KS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 26):628. PubMed ID: 31839008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational drug repositioning using meta-path-based semantic network analysis.
    Tian Z; Teng Z; Cheng S; Guo M
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction.
    Kitsiranuwat S; Suratanee A; Plaimas K
    Sci Prog; 2022; 105(3):368504221109215. PubMed ID: 35801312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Potential Drug-Disease Associations through Deep Integration of Diversity and Projections of Various Drug Features.
    Xuan P; Song Y; Zhang T; Jia L
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31443472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico drug repositioning: what we need to know.
    Liu Z; Fang H; Reagan K; Xu X; Mendrick DL; Slikker W; Tong W
    Drug Discov Today; 2013 Feb; 18(3-4):110-5. PubMed ID: 22935104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico drug repositioning based on the integration of chemical, genomic and pharmacological spaces.
    Chen H; Zhang Z; Zhang J
    BMC Bioinformatics; 2021 Feb; 22(1):52. PubMed ID: 33557749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug repurposing: Iron in the fire for older drugs.
    Sonaye HV; Sheikh RY; Doifode CA
    Biomed Pharmacother; 2021 Sep; 141():111638. PubMed ID: 34153846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity.
    Lei S; Lei X; Chen M; Pan Y
    Interdiscip Sci; 2024 Mar; 16(1):160-175. PubMed ID: 38103130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additional Neural Matrix Factorization model for computational drug repositioning.
    Yang X; Zamit L; Liu Y; He J
    BMC Bioinformatics; 2019 Aug; 20(1):423. PubMed ID: 31412762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.