BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31726977)

  • 21. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HNet-DNN: Inferring New Drug-Disease Associations with Deep Neural Network Based on Heterogeneous Network Features.
    Liu H; Zhang W; Song Y; Deng L; Zhou S
    J Chem Inf Model; 2020 Apr; 60(4):2367-2376. PubMed ID: 32118415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational drug repositioning through heterogeneous network clustering.
    Wu C; Gudivada RC; Aronow BJ; Jegga AG
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S6. PubMed ID: 24564976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A geometric deep learning framework for drug repositioning over heterogeneous information networks.
    Zhao BW; Su XR; Hu PW; Ma YP; Zhou X; Hu L
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36125202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Realizing drug repositioning by adapting a recommendation system to handle the process.
    Ozsoy MG; Özyer T; Polat F; Alhajj R
    BMC Bioinformatics; 2018 Apr; 19(1):136. PubMed ID: 29649971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid attentional memory network for computational drug repositioning.
    He J; Yang X; Gong Z; Zamit L
    BMC Bioinformatics; 2020 Dec; 21(1):566. PubMed ID: 33297947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DRONet: effectiveness-driven drug repositioning framework using network embedding and ranking learning.
    Yang K; Yang Y; Fan S; Xia J; Zheng Q; Dong X; Liu J; Liu Q; Lei L; Zhang Y; Li B; Gao Z; Zhang R; Liu B; Wang Z; Zhou X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36562715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug repositioning by applying 'expression profiles' generated by integrating chemical structure similarity and gene semantic similarity.
    Tan F; Yang R; Xu X; Chen X; Wang Y; Ma H; Liu X; Wu X; Chen Y; Liu L; Jia X
    Mol Biosyst; 2014 May; 10(5):1126-38. PubMed ID: 24603772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph.
    Zhu Y; Che C; Jin B; Zhang N; Su C; Wang F
    Health Informatics J; 2020 Dec; 26(4):2737-2750. PubMed ID: 32674665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network.
    Jadamba E; Shin M
    Biomed Res Int; 2016; 2016():7147039. PubMed ID: 28127549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures.
    Emon MA; Domingo-Fernández D; Hoyt CT; Hofmann-Apitius M
    BMC Bioinformatics; 2020 Jun; 21(1):231. PubMed ID: 32503412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19.
    El-Behery H; Attia AF; El-Feshawy N; Torkey H
    Comput Biol Chem; 2021 Aug; 93():107536. PubMed ID: 34271420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, and virtual screening-based approaches.
    Ahmed F; Kang IS; Kim KH; Asif A; Rahim CSA; Samantasinghar A; Memon FH; Choi KH
    J Med Virol; 2023 Apr; 95(4):e28693. PubMed ID: 36946499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.