BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31726986)

  • 1. MLW-gcForest: a multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data.
    Dong Y; Yang W; Wang J; Zhao J; Qiang Y; Zhao Z; Kazihise NGF; Cui Y; Yang X; Liu S
    BMC Bioinformatics; 2019 Nov; 20(1):578. PubMed ID: 31726986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Effects of Different Levels of Genomic Data for the Staging of Lung Adenocarcinoma: An Illustrative Study.
    Li Y; Mansmann U; Du S; Hornung R
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma.
    Zengin T; Önal-Süzek T
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):368. PubMed ID: 32998690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis.
    Yu L; Tao G; Zhu L; Wang G; Li Z; Ye J; Chen Q
    BMC Cancer; 2019 May; 19(1):464. PubMed ID: 31101024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data.
    Xu D; Zhang J; Xu H; Zhang Y; Chen W; Gao R; Dehmer M
    BMC Genomics; 2020 Sep; 21(1):650. PubMed ID: 32962626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular subtypes based on DNA promoter methylation predict prognosis in lung adenocarcinoma patients.
    Shi S; Xu M; Xi Y
    Aging (Albany NY); 2020 Nov; 12(23):23917-23930. PubMed ID: 33237038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms.
    Yuan F; Lu L; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165822. PubMed ID: 32360590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LUADpp: an effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features.
    Yu J; Hu Y; Xu Y; Wang J; Kuang J; Zhang W; Shao J; Guo D; Wang Y
    BMC Cancer; 2019 Mar; 19(1):263. PubMed ID: 30902072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate models from RNA-Seq SNVs yield candidate molecular targets for biomarker discovery: SNV-DA.
    Paul MR; Levitt NP; Moore DE; Watson PM; Wilson RC; Denlinger CE; Watson DK; Anderson PE
    BMC Genomics; 2016 Mar; 17():263. PubMed ID: 27029813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA dysregulational synergistic network: discovering microRNA dysregulatory modules across subtypes in non-small cell lung cancers.
    Tran N; Abhyankar V; Nguyen K; Weidanz J; Gao J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 20):504. PubMed ID: 30577741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of Lung Adenocarcinoma-specific Gene Pairs Based on Genetic Algorithm and Establishment of a Deep Learning Prediction Model.
    Zhao Z; Fan X; Yang L; Song J; Fang S; Tu J; Chen M; Li J; Zheng L; Wu F; Zhang D; Ying X; Ji J
    Comb Chem High Throughput Screen; 2019; 22(4):256-265. PubMed ID: 31142257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lung adenocarcinoma identification based on hybrid feature selections and attentional convolutional neural networks.
    Li K; Wang Z; Zhou Y; Li S
    Math Biosci Eng; 2024 Jan; 21(2):2991-3015. PubMed ID: 38454716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest.
    Li G; Ma HD; Liu RY; Shen MD; Zhang KX
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34066807
    [No Abstract]   [Full Text] [Related]  

  • 15. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder.
    Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X
    Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation biomarkers for the occurrence of lung adenocarcinoma from TCGA data mining.
    Zhu XF; Zhu BS; Wu FM; Hu HB
    J Cell Physiol; 2018 Oct; 233(10):6777-6784. PubMed ID: 29667778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiomics-Based Feature Extraction and Selection for the Prediction of Lung Cancer Survival.
    Jaksik R; Szumała K; Dinh KN; Śmieja J
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of lung cancer using ensemble-based feature selection and machine learning methods.
    Cai Z; Xu D; Zhang Q; Zhang J; Ngai SM; Shao J
    Mol Biosyst; 2015 Mar; 11(3):791-800. PubMed ID: 25512221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of Bone Metastasis in Elderly Patients With Lung Adenocarcinoma Using Multiple Machine Learning Algorithms.
    Zhou CM; Wang Y; Xue Q; Zhu Y
    Cancer Control; 2023; 30():10732748231167958. PubMed ID: 37010850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas.
    Dietz S; Lifshitz A; Kazdal D; Harms A; Endris V; Winter H; Stenzinger A; Warth A; Sill M; Tanay A; Sültmann H
    Int J Cancer; 2019 Mar; 144(5):1061-1072. PubMed ID: 30350867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.