BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31727118)

  • 1. mPies: a novel metaproteomics tool for the creation of relevant protein databases and automatized protein annotation.
    Werner J; Géron A; Kerssemakers J; Matallana-Surget S
    Biol Direct; 2019 Nov; 14(1):21. PubMed ID: 31727118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data.
    Kieser S; Brown J; Zdobnov EM; Trajkovski M; McCue LA
    BMC Bioinformatics; 2020 Jun; 21(1):257. PubMed ID: 32571209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane.
    Schiebenhoefer H; Schallert K; Renard BY; Trappe K; Schmid E; Benndorf D; Riedel K; Muth T; Fuchs S
    Nat Protoc; 2020 Oct; 15(10):3212-3239. PubMed ID: 32859984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis.
    Schiebenhoefer H; Van Den Bossche T; Fuchs S; Renard BY; Muth T; Martens L
    Expert Rev Proteomics; 2019 May; 16(5):375-390. PubMed ID: 31002542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.
    Abraham PE; Giannone RJ; Xiong W; Hettich RL
    Curr Protoc Bioinformatics; 2014 Jun; 46():13.26.1-13.26.14. PubMed ID: 24939130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metaproteomic analysis using the Galaxy framework.
    Jagtap PD; Blakely A; Murray K; Stewart S; Kooren J; Johnson JE; Rhodus NL; Rudney J; Griffin TJ
    Proteomics; 2015 Oct; 15(20):3553-65. PubMed ID: 26058579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput metaproteomics data analysis with Unipept: A tutorial.
    Mesuere B; Van der Jeugt F; Willems T; Naessens T; Devreese B; Martens L; Dawyndt P
    J Proteomics; 2018 Jan; 171():11-22. PubMed ID: 28552653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metaproteomics of Freshwater Microbial Communities.
    Russo DA; Couto N; Beckerman AP; Pandhal J
    Methods Mol Biol; 2019; 1977():145-155. PubMed ID: 30980327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go.
    Muth T; Kohrs F; Heyer R; Benndorf D; Rapp E; Reichl U; Martens L; Renard BY
    Anal Chem; 2018 Jan; 90(1):685-689. PubMed ID: 29215871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetaGOmics: A Web-Based Tool for Peptide-Centric Functional and Taxonomic Analysis of Metaproteomics Data.
    Riffle M; May DH; Timmins-Schiffman E; Mikan MP; Jaschob D; Noble WS; Nunn BL
    Proteomes; 2017 Dec; 6(1):. PubMed ID: 29280960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Bioinformatics Approach to Identify High Quality Mass Spectrometry Data and Functionally Annotate Proteins and Proteomes.
    Islam MT; Mohamedali A; Ahn SB; Nawar I; Baker MS; Ranganathan S
    Methods Mol Biol; 2017; 1549():163-176. PubMed ID: 27975291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.
    Tanizawa Y; Fujisawa T; Nakamura Y
    Bioinformatics; 2018 Mar; 34(6):1037-1039. PubMed ID: 29106469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering.
    Hao C; Elias JE; Lee PKH; Lam H
    Microbiome; 2023 Aug; 11(1):176. PubMed ID: 37550758
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Schallert K; Verschaffelt P; Mesuere B; Benndorf D; Martens L; Van Den Bossche T
    J Proteome Res; 2022 Apr; 21(4):1175-1180. PubMed ID: 35143215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Association of Biomolecular Resource Facilities Proteome Informatics Research Group Study on Metaproteomics (iPRG-2020).
    Jagtap PD; Hoopmann MR; Neely BA; Harvey A; Käll L; Perez-Riverol Y; Abajorga MK; Thomas JA; Weintraub ST; Palmblad M
    J Biomol Tech; 2023 Sep; 34(3):. PubMed ID: 37969874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding.
    Keiblinger KM; Fuchs S; Zechmeister-Boltenstern S; Riedel K
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27549116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the Functioning of Microbial Communities: Shedding Light on the Critical Steps in Metaproteomics.
    Géron A; Werner J; Wattiez R; Lebaron P; Matallana-Surget S
    Front Microbiol; 2019; 10():2395. PubMed ID: 31708885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GO FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data.
    Araujo FA; Barh D; Silva A; Guimarães L; Ramos RTJ
    Sci Rep; 2018 Jan; 8(1):1794. PubMed ID: 29379090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the power of interpretation for soil metaproteomics data.
    Jouffret V; Miotello G; Culotta K; Ayrault S; Pible O; Armengaud J
    Microbiome; 2021 Sep; 9(1):195. PubMed ID: 34587999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.