BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31727118)

  • 21. GO FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data.
    Araujo FA; Barh D; Silva A; Guimarães L; Ramos RTJ
    Sci Rep; 2018 Jan; 8(1):1794. PubMed ID: 29379090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function is what counts: how microbial community complexity affects species, proteome and pathway coverage in metaproteomics.
    Lohmann P; Schäpe SS; Haange SB; Oliphant K; Allen-Vercoe E; Jehmlich N; Von Bergen M
    Expert Rev Proteomics; 2020 Feb; 17(2):163-173. PubMed ID: 32174200
    [No Abstract]   [Full Text] [Related]  

  • 23. Quantitative metaproteomics: functional insights into microbial communities.
    Pan C; Banfield JF
    Methods Mol Biol; 2014; 1096():231-40. PubMed ID: 24515373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation.
    Muth T; Behne A; Heyer R; Kohrs F; Benndorf D; Hoffmann M; Lehtevä M; Reichl U; Martens L; Rapp E
    J Proteome Res; 2015 Mar; 14(3):1557-65. PubMed ID: 25660940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. COGNATE: comparative gene annotation characterizer.
    Wilbrandt J; Misof B; Niehuis O
    BMC Genomics; 2017 Jul; 18(1):535. PubMed ID: 28716078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics databases and repositories.
    Martens L
    Methods Mol Biol; 2011; 694():213-27. PubMed ID: 21082437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing metaproteomics--The value of models and defined environmental microbial systems.
    Herbst FA; Lünsmann V; Kjeldal H; Jehmlich N; Tholey A; von Bergen M; Nielsen JL; Hettich RL; Seifert J; Nielsen PH
    Proteomics; 2016 Mar; 16(5):783-98. PubMed ID: 26621789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TypeLoader: A fast and efficient automated workflow for the annotation and submission of novel full-length HLA alleles.
    Surendranath V; Albrecht V; Hayhurst JD; Schöne B; Robinson J; Marsh SGE; Schmidt AH; Lange V
    HLA; 2017 Jul; 90(1):25-31. PubMed ID: 28503844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource.
    Druce M; Hulo C; Masson P; Sommer P; Xenarios I; Le Mercier P; De Oliveira T
    Database (Oxford); 2016; 2016():. PubMed ID: 27087306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The different proteomes of Chlamydomonas reinhardtii.
    Valledor L; Recuenco-Munoz L; Egelhofer V; Wienkoop S; Weckwerth W
    J Proteomics; 2012 Oct; 75(18):5883-7. PubMed ID: 22967953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional annotation and biological interpretation of proteomics data.
    Carnielli CM; Winck FV; Paes Leme AF
    Biochim Biophys Acta; 2015 Jan; 1854(1):46-54. PubMed ID: 25448015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges and perspectives of metaproteomic data analysis.
    Heyer R; Schallert K; Zoun R; Becher B; Saake G; Benndorf D
    J Biotechnol; 2017 Nov; 261():24-36. PubMed ID: 28663049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic.
    Liu CW; Chi L; Tu P; Xue J; Ru H; Lu K
    J Proteome Res; 2019 Mar; 18(3):970-981. PubMed ID: 30545218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. StandEnA: a customizable workflow for standardized annotation and generating a presence-absence matrix of proteins.
    Chafra F; Borim Correa F; Oni F; Konu Karakayalı Ö; Stadler PF; Nunes da Rocha U
    Bioinform Adv; 2023; 3(1):vbad069. PubMed ID: 37448812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Map and Functional Annotation of Human Pituitary and Thyroid Proteome.
    Liu X; Guo Z; Sun H; Li W; Sun W
    J Proteome Res; 2017 Aug; 16(8):2680-2691. PubMed ID: 28678506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinformatics Workflow for Gonococcal Proteomics.
    El-Rami FE; Sikora AE
    Methods Mol Biol; 2019; 1997():185-205. PubMed ID: 31119625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Database-independent de novo metaproteomics of complex microbial communities.
    Kleikamp HBC; Pronk M; Tugui C; Guedes da Silva L; Abbas B; Lin YM; van Loosdrecht MCM; Pabst M
    Cell Syst; 2021 May; 12(5):375-383.e5. PubMed ID: 34023022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The unique peptidome: Taxon-specific tryptic peptides as biomarkers for targeted metaproteomics.
    Mesuere B; Van der Jeugt F; Devreese B; Vandamme P; Dawyndt P
    Proteomics; 2016 Sep; 16(17):2313-8. PubMed ID: 27380722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease.
    Do K; Mehta S; Wagner R; Bhuming D; Rajczewski AT; Skubitz APN; Johnson JE; Griffin TJ; Jagtap PD
    mSphere; 2024 May; ():e0079323. PubMed ID: 38780289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development.
    Deegan née Clark JI; Dimmer EC; Mungall CJ
    BMC Bioinformatics; 2010 Oct; 11():530. PubMed ID: 20973947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.