These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31727224)

  • 1. Sensory neurologic disorders: Tinnitus.
    Chemali Z; Nehmé R; Fricchione G
    Handb Clin Neurol; 2019; 165():365-381. PubMed ID: 31727224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas.
    Berlot E; Arts R; Smit J; George E; Gulban OF; Moerel M; Stokroos R; Formisano E; De Martino F
    Neuroimage Clin; 2020; 25():102166. PubMed ID: 31958686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of auditory cortex in noise- and drug-induced tinnitus.
    Eggermont JJ
    Am J Audiol; 2008 Dec; 17(2):S162-9. PubMed ID: 18978202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment.
    Shore SE; Roberts LE; Langguth B
    Nat Rev Neurol; 2016 Mar; 12(3):150-60. PubMed ID: 26868680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Final common pathway for tinnitus: theoretical and clinical implications of neuroanatomical substrates.
    Shulman A; Goldstein B; Strashun AM
    Int Tinnitus J; 2009; 15(1):5-50. PubMed ID: 19842346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.
    Schlee W; Weisz N; Bertrand O; Hartmann T; Elbert T
    PLoS One; 2008; 3(11):e3720. PubMed ID: 19005566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tinnitus and underlying brain mechanisms.
    Galazyuk AV; Wenstrup JJ; Hamid MA
    Curr Opin Otolaryngol Head Neck Surg; 2012 Oct; 20(5):409-15. PubMed ID: 22931904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical reorganisation and tinnitus: principles of auditory discrimination training for tinnitus management.
    Herraiz C; Diges I; Cobo P; Aparicio JM
    Eur Arch Otorhinolaryngol; 2009 Jan; 266(1):9-16. PubMed ID: 18587591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study.
    Ashton H; Reid K; Marsh R; Johnson I; Alter K; Griffiths T
    Neurosci Lett; 2007 Oct; 426(1):23-8. PubMed ID: 17888572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss.
    Boyen K; de Kleine E; van Dijk P; Langers DR
    Hear Res; 2014 Jun; 312():48-59. PubMed ID: 24631963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the cochlear and central mechanisms of tinnitus and therapeutic approaches.
    Noreña AJ
    Audiol Neurootol; 2015; 20 Suppl 1():53-9. PubMed ID: 25997584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neuropsychiatry of tinnitus: a circuit-based approach to the causes and treatments available.
    Minen MT; Camprodon J; Nehme R; Chemali Z
    J Neurol Neurosurg Psychiatry; 2014 Oct; 85(10):1138-44. PubMed ID: 24744443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram.
    Qu T; Qi Y; Yu S; Du Z; Wei W; Cai A; Wang J; Nie B; Liu K; Gong S
    Neuroscience; 2019 Jun; 408():31-45. PubMed ID: 30946875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tinnitus and auditory cortex: using adapted functional near-infrared spectroscopy to measure resting-state functional connectivity.
    San Juan JD; Zhai T; Ash-Rafzadeh A; Hu XS; Kim J; Filipak C; Guo K; Islam MN; Kovelman I; Basura GJ
    Neuroreport; 2021 Jan; 32(1):66-75. PubMed ID: 33252478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization.
    Okamoto H
    Neural Plast; 2018; 2018():2546250. PubMed ID: 29887880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.
    Takacs JD; Forrest TJ; Basura GJ
    Hear Res; 2017 Dec; 356():1-15. PubMed ID: 28724501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Understanding, Diagnosis, and Treatment of Tinnitus.
    Tang D; Li H; Chen L
    Adv Exp Med Biol; 2019; 1130():109-128. PubMed ID: 30915704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma.
    Noreña AJ; Moffat G; Blanc JL; Pezard L; Cazals Y
    Neuroscience; 2010 Apr; 166(4):1194-209. PubMed ID: 20096752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psychophysical and neural correlates of noised-induced tinnitus in animals: Intra- and inter-auditory and non-auditory brain structure studies.
    Zhang J; Luo H; Pace E; Li L; Liu B
    Hear Res; 2016 Apr; 334():7-19. PubMed ID: 26299842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.