These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31727355)
1. Utility of linear and nonlinear models for retention prediction in liquid chromatography. Gilar M; Hill J; McDonald TS; Gritti F J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355 [TBL] [Abstract][Full Text] [Related]
2. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Vaast A; Tyteca E; Desmet G; Schoenmakers PJ; Eeltink S J Chromatogr A; 2014 Aug; 1355():149-57. PubMed ID: 24986072 [TBL] [Abstract][Full Text] [Related]
3. Perspective on the Future Approaches to Predict Retention in Liquid Chromatography. Gritti F Anal Chem; 2021 Apr; 93(14):5653-5664. PubMed ID: 33797872 [TBL] [Abstract][Full Text] [Related]
4. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155 [TBL] [Abstract][Full Text] [Related]
5. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model. Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331 [TBL] [Abstract][Full Text] [Related]
6. [Optimum separation conditions of catechin compounds by HCI program in reversed-phase high performance liquid chromatography]. Jin Y; Row KH Se Pu; 2006 Sep; 24(5):466-70. PubMed ID: 17165539 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous optimization of pH and binary organic composition by grid form modeling of the retention behavior in reversed-phase ultra high-performance liquid chromatography. Sasaki T; Todoroki K; Toyo'oka T J Pharm Biomed Anal; 2017 Nov; 146():251-260. PubMed ID: 28888712 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition. Tsui HW; Kuo CH; Huang YC J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy. Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503 [TBL] [Abstract][Full Text] [Related]
10. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
11. Some insights on the description of gradient elution in reversed-phase liquid chromatography. Baeza-Baeza JJ; García-Álvarez-Coque MC J Sep Sci; 2014 Sep; 37(17):2269-77. PubMed ID: 24945785 [TBL] [Abstract][Full Text] [Related]
12. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Gika H; Theodoridis G; Mattivi F; Vrhovsek U; Pappa-Louisi A J Sep Sci; 2012 Feb; 35(3):376-83. PubMed ID: 22228618 [TBL] [Abstract][Full Text] [Related]
13. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents. Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210 [TBL] [Abstract][Full Text] [Related]
14. Exact peak compression factor in linear gradient elution. I. Theory. Gritti F; Guiochon G J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of retention model parameters obtained from retention data in liquid chromatography. Brau T; Pirok B; Rutan S; Stoll D J Sep Sci; 2022 Sep; 45(17):3241-3255. PubMed ID: 35304809 [TBL] [Abstract][Full Text] [Related]
16. [Effects of peak compression in gradient elution of liquid chromatography]. Hao W; Liu L; Shen Q Se Pu; 2021 Jan; 39(1):10-14. PubMed ID: 34227354 [TBL] [Abstract][Full Text] [Related]
17. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands. Hearn MT; Zhao G Anal Chem; 1999 Nov; 71(21):4874-85. PubMed ID: 10565277 [TBL] [Abstract][Full Text] [Related]
18. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography. Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147 [TBL] [Abstract][Full Text] [Related]
19. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673 [TBL] [Abstract][Full Text] [Related]
20. Prediction of peptide retention times in normal-phase liquid chromatography with only a single gradient run. Yoshida T; Okada T J Chromatogr A; 1999 May; 841(1):19-32. PubMed ID: 10360326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]