BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 31727369)

  • 1. Random insertion transposon mutagenesis of Mycobacterium fortuitum identified mutant defective in biofilm formation.
    Katoch P; Gupta K; Yennamalli RM; Vashistt J; Bisht GS; Shrivastava R
    Biochem Biophys Res Commun; 2020 Jan; 521(4):991-996. PubMed ID: 31727369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis.
    Hu Q; Zhu Y; Tu J; Yin Y; Wang X; Han X; Ding C; Zhang B; Yu S
    PLoS One; 2012; 7(6):e39805. PubMed ID: 22768127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis.
    Parti RP; Shrivastava R; Srivastava S; Subramanian AR; Roy R; Srivastava BS; Srivastava R
    Microb Pathog; 2008; 45(5-6):370-6. PubMed ID: 18930129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockdown of the Type-II Fatty acid synthase gene
    Sharma A; Vashistt J; Shrivastava R
    Int J Mycobacteriol; 2022; 11(2):159-166. PubMed ID: 35775548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum.
    Hall-Stoodley L; Lappin-Scott H
    FEMS Microbiol Lett; 1998 Nov; 168(1):77-84. PubMed ID: 9812366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm.
    Sharma A; Bansal S; Kumari N; Vashistt J; Shrivastava R
    Appl Microbiol Biotechnol; 2023 Oct; 107(19):6029-6046. PubMed ID: 37542577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum.
    Bardouniotis E; Ceri H; Olson ME
    Curr Microbiol; 2003 Jan; 46(1):28-32. PubMed ID: 12432460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium fortuitum fabG4 knockdown studies: Implication as pellicle and biofilm specific drug target.
    Sharma A; Vashistt J; Shrivastava R
    J Basic Microbiol; 2022 Dec; 62(12):1504-1513. PubMed ID: 35736669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of MshQ in MSHA pili biosynthesis and biofilm formation of Aeromonas hydrophila.
    Qin YX; Yan QP; Mao XX; Chen Z; Su YQ
    Genet Mol Res; 2014 Oct; 13(4):8982-96. PubMed ID: 25366789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis genome.
    Kristich CJ; Nguyen VT; Le T; Barnes AM; Grindle S; Dunny GM
    Appl Environ Microbiol; 2008 Jun; 74(11):3377-86. PubMed ID: 18408066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of genes involved in Mycoplasma gallisepticum biofilm formation using mini-Tn4001-SGM transposon mutagenesis.
    Wang Y; Yi L; Zhang F; Qiu X; Tan L; Yu S; Cheng X; Ding C
    Vet Microbiol; 2017 Jan; 198():17-22. PubMed ID: 28062003
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Katoch P; Bisht GS; Shrivastava R
    Int J Mycobacteriol; 2019; 8(4):390-396. PubMed ID: 31793511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro.
    Pearson MM; Hansen EJ
    Infect Immun; 2007 Sep; 75(9):4316-25. PubMed ID: 17562762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enterococcal colonization of the gastro-intestinal tract: role of biofilm and environmental oligosaccharides.
    Creti R; Koch S; Fabretti F; Baldassarri L; Huebner J
    BMC Microbiol; 2006 Jul; 6():60. PubMed ID: 16834772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111.
    Huber B; Riedel K; Köthe M; Givskov M; Molin S; Eberl L
    Mol Microbiol; 2002 Oct; 46(2):411-26. PubMed ID: 12406218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal maturation factor (RimP) is essential for survival of nontuberculous mycobacteria
    Poonam ; Yennamalli RM; Bisht GS; Shrivastava R
    3 Biotech; 2019 Apr; 9(4):127. PubMed ID: 30863706
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis.
    Chang Y; Gu W; Fischer N; McLandsborough L
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2051-62. PubMed ID: 22120623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
    Ramsey MM; Whiteley M
    Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Pathogenicity-Related Genes in Biofilm-Defective Acidovorax citrulli by Transposon Tn5 Mutagenesis.
    Luo J; Qiu W; Chen L; Anjum SI; Yu M; Shan C; Ilyas M; Li B; Wang Y; Sun G
    Int J Mol Sci; 2015 Nov; 16(12):28050-62. PubMed ID: 26602922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium avium genes associated with the ability to form a biofilm.
    Yamazaki Y; Danelishvili L; Wu M; Macnab M; Bermudez LE
    Appl Environ Microbiol; 2006 Jan; 72(1):819-25. PubMed ID: 16391123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.