These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3172738)

  • 1. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements.
    Theret DP; Levesque MJ; Sato M; Nerem RM; Wheeler LT
    J Biomech Eng; 1988 Aug; 110(3):190-9. PubMed ID: 3172738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress.
    Sato M; Ohshima N; Nerem RM
    J Biomech; 1996 Apr; 29(4):461-7. PubMed ID: 8964775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.
    Sato M; Levesque MJ; Nerem RM
    Arteriosclerosis; 1987; 7(3):276-86. PubMed ID: 3593075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.
    Sato M; Theret DP; Wheeler LT; Ohshima N; Nerem RM
    J Biomech Eng; 1990 Aug; 112(3):263-8. PubMed ID: 2214707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.
    Ohashi T; Ishii Y; Ishikawa Y; Matsumoto T; Sato M
    Biomed Mater Eng; 2002; 12(3):319-27. PubMed ID: 12446947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells.
    Sato M; Levesque MJ; Nerem RM
    J Biomech Eng; 1987 Feb; 109(1):27-34. PubMed ID: 3560876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study.
    Chivukula VK; Krog BL; Nauseef JT; Henry MD; Vigmostad SC
    Cell Health Cytoskelet; 2015 Jan; 7():25-35. PubMed ID: 25908902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers.
    Barbee KA; Mundel T; Lal R; Davies PF
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1765-72. PubMed ID: 7733381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of shear stress and flow pattern on proliferation of vascular endothelial cells].
    Hu J; Hu J; Gao Y; Li T; Tao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):422-4. PubMed ID: 14565004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rheologic properties of the human umbilical vein endothelial cells exposed to shear stress].
    Chen H; Ding Z; Wang L; Huang X
    Hua Xi Yi Ke Da Xue Xue Bao; 1995 Jun; 26(2):181-6. PubMed ID: 7490027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Simulation of the deformation of the endothelial cell under a shear flow].
    Liu X; Waché P; Wang X; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):541-6. PubMed ID: 12561342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the passive mechanical properties of the resting platelet.
    Haga JH; Beaudoin AJ; White JG; Strony J
    Ann Biomed Eng; 1998; 26(2):268-77. PubMed ID: 9525767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation.
    Truskey GA; Barber KM; Robey TC; Olivier LA; Combs MP
    J Biomech Eng; 1995 May; 117(2):203-10. PubMed ID: 7666657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system for culture of endothelial cells in 20-50-microns branching tubes.
    Frame MD; Sarelius IH
    Microcirculation; 1995 Dec; 2(4):377-85. PubMed ID: 8714819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Cell Mechanical Properties Using Microindentation.
    Husson J
    Methods Mol Biol; 2023; 2600():3-23. PubMed ID: 36587087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics.
    Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF
    J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton.
    Satcher RL; Dewey CF
    Biophys J; 1996 Jul; 71(1):109-18. PubMed ID: 8804594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments.
    Sato M; Suzuki K; Ueki Y; Ohashi T
    Acta Biomater; 2007 May; 3(3):311-9. PubMed ID: 17055790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutral axis location in bending and Young's modulus of different layers of arterial wall.
    Yu Q; Zhou J; Fung YC
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H52-60. PubMed ID: 8342664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.