These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3172739)

  • 1. Structural three-dimensional constitutive law for the passive myocardium.
    Horowitz A; Lanir Y; Yin FC; Perl M; Sheinman I; Strumpf RK
    J Biomech Eng; 1988 Aug; 110(3):200-7. PubMed ID: 3172739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part I: Two dimensional formulation for thin myocardial strips.
    Horowitz A; Sheinman I; Lanir Y; Perl M; Sideman S
    J Biomech Eng; 1988 Feb; 110(1):57-61. PubMed ID: 3347024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus.
    Lin DH; Yin FC
    J Biomech Eng; 1998 Aug; 120(4):504-17. PubMed ID: 10412422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of a constitutive relation for passive myocardium: II. Parameter estimation.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel constitutive model for passive right ventricular myocardium: evidence for myofiber-collagen fiber mechanical coupling.
    Avazmohammadi R; Hill MR; Simon MA; Zhang W; Sacks MS
    Biomech Model Mechanobiol; 2017 Apr; 16(2):561-581. PubMed ID: 27696332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.
    Martufi G; Gasser TC
    J Biomech; 2011 Sep; 44(14):2544-50. PubMed ID: 21862020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues.
    Sacks MS
    J Biomech Eng; 2003 Apr; 125(2):280-7. PubMed ID: 12751291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations.
    Schmid H; Wang YK; Ashton J; Ehret AE; Krittian SB; Nash MP; Hunter PJ
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):283-95. PubMed ID: 19089682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function.
    Humphrey JD; Yin FC
    J Biomech Eng; 1987 Nov; 109(4):298-304. PubMed ID: 3695429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization.
    Lokshin O; Lanir Y
    J Biomech Eng; 2009 Mar; 131(3):031009. PubMed ID: 19154068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new model of passive muscle tissue integrating Collagen Fibers: Consequences for muscle behavior analysis.
    Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y
    J Mech Behav Biomed Mater; 2018 Dec; 88():29-40. PubMed ID: 30121444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural model of perimysial collagen fibers for resting myocardial mechanics during ventricular filling.
    MacKenna DA; Vaplon SM; McCulloch AD
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1576-86. PubMed ID: 9321852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments.
    Horowitz A; Sheinman I; Lanir Y
    J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle.
    Humphrey JD; Yin FC
    Circ Res; 1989 Sep; 65(3):805-17. PubMed ID: 2766492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.