These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3172743)

  • 1. Simulation of the double limb support phase of human gait.
    Ju MS; Mansour JM
    J Biomech Eng; 1988 Aug; 110(3):223-9. PubMed ID: 3172743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling initial contact dynamics during ambulation with dynamic simulation.
    Meyer AR; Wang M; Smith PA; Harris GF
    Med Biol Eng Comput; 2007 Apr; 45(4):387-94. PubMed ID: 17268804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of human gait using computed torque control.
    Unver NF; Tümer ST; Ozgören MK
    Technol Health Care; 2000; 8(1):53-66. PubMed ID: 10942991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Forward Dynamic Modelling Investigation of Cause-and-Effect Relationships in Single Support Phase of Human Walking.
    McGrath M; Howard D; Baker R
    Comput Math Methods Med; 2015; 2015():383705. PubMed ID: 26175797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presenting joint kinematics of human locomotion using phase plane portraits and Poincaré maps.
    Hurmuzlu Y; Basdogan C; Carollo JJ
    J Biomech; 1994 Dec; 27(12):1495-9. PubMed ID: 7528748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of the major determinants of human gait.
    Lin YC; Gfoehler M; Pandy MG
    J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames.
    Schache AG; Baker R; Vaughan CL
    J Biomech; 2007; 40(1):9-19. PubMed ID: 16442547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of foot orthoses on the medial longitudinal arch in children with flexible flatfoot deformity: A three-dimensional moment analysis.
    Jafarnezhadgero AA; Shad MM; Majlesi M
    Gait Posture; 2017 Jun; 55():75-80. PubMed ID: 28419877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for the detection and exploration of joint coupling patterns in the lower limb kinetic chain.
    Deschamps K; Eerdekens M; Geentjens J; Santermans L; Steurs L; Dingenen B; Thysen M; Staes F
    Gait Posture; 2018 May; 62():372-377. PubMed ID: 29625413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking.
    Koopman B; Grootenboer HJ; de Jongh HJ
    J Biomech; 1995 Nov; 28(11):1369-76. PubMed ID: 8522549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations.
    Villarreal DJ; Poonawala HA; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):265-278. PubMed ID: 27187967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking.
    Zelik KE; Takahashi KZ; Sawicki GS
    J Exp Biol; 2015 Mar; 218(Pt 6):876-86. PubMed ID: 25788726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the kinematics and kinetics of gait based on the optimum trajectory of the swing limb.
    Chou LS; Song SM; Draganich LF
    J Biomech; 1995 Apr; 28(4):377-85. PubMed ID: 7738047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancy.
    Aguiar L; Santos-Rocha R; Vieira F; Branco M; Andrade C; Veloso A
    Gait Posture; 2015 Oct; 42(4):511-7. PubMed ID: 26410476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of dorsal and heel plate foot tracking methods on lower extremity dynamics.
    Hashish R; Samarawickrame SD; Salem GJ
    J Biomech; 2014 Mar; 47(5):1211-4. PubMed ID: 24556124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.