These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 31727446)
1. Three-body wear of 3D printed temporary materials. Kessler A; Reymus M; Hickel R; Kunzelmann KH Dent Mater; 2019 Dec; 35(12):1805-1812. PubMed ID: 31727446 [TBL] [Abstract][Full Text] [Related]
2. Effects of printing orientation and artificial ageing on martens hardness and indentation modulus of 3D printed restorative resin materials. Mudhaffer S; Althagafi R; Haider J; Satterthwaite J; Silikas N Dent Mater; 2024 Jul; 40(7):1003-1014. PubMed ID: 38735775 [TBL] [Abstract][Full Text] [Related]
3. Initial biocompatibility of novel resins for 3D printed fixed dental prostheses. Wuersching SN; Hickel R; Edelhoff D; Kollmuss M Dent Mater; 2022 Oct; 38(10):1587-1597. PubMed ID: 36008188 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity of 3D printed resin materials for temporary restorations on human periodontal ligament (PDL-hTERT) cells. Folwaczny M; Ahantab R; Kessler A; Ern C; Frasheri I Dent Mater; 2023 May; 39(5):529-537. PubMed ID: 37055304 [TBL] [Abstract][Full Text] [Related]
5. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. KEßLER A; Hickel R; Ilie N Dent Mater J; 2021 May; 40(3):641-649. PubMed ID: 33456026 [TBL] [Abstract][Full Text] [Related]
6. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. Stawarczyk B; Özcan M; Trottmann A; Schmutz F; Roos M; Hämmerle C J Prosthet Dent; 2013 May; 109(5):325-32. PubMed ID: 23684283 [TBL] [Abstract][Full Text] [Related]
7. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. Awad D; Stawarczyk B; Liebermann A; Ilie N J Prosthet Dent; 2015 Jun; 113(6):534-40. PubMed ID: 25749093 [TBL] [Abstract][Full Text] [Related]
8. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging-an in vitro study. Reymus M; Fabritius R; Keßler A; Hickel R; Edelhoff D; Stawarczyk B Clin Oral Investig; 2020 Feb; 24(2):701-710. PubMed ID: 31127429 [TBL] [Abstract][Full Text] [Related]
9. Effects of print orientation and artificial aging on the flexural strength and flexural modulus of 3D printed restorative resin materials. Mudhaffer S; Haider J; Satterthwaite J; Silikas N J Prosthet Dent; 2024 Oct; ():. PubMed ID: 39366837 [TBL] [Abstract][Full Text] [Related]
10. Influence of Different Postpolymerization Strategies and Artificial Aging on Hardness of 3D-Printed Resin Materials: An In Vitro Study. Reymus M; Stawarczyk B Int J Prosthodont; 2020; 33(6):634-640. PubMed ID: 33284905 [TBL] [Abstract][Full Text] [Related]
11. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. Frasheri I; Aumer K; Keßler A; Miosge N; Folwaczny M J Esthet Restor Dent; 2022 Oct; 34(7):1105-1112. PubMed ID: 35731110 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of wear behaviour of various occlusal splint materials and manufacturing processes. Grymak A; Waddell JN; Aarts JM; Ma S; Choi JJE J Mech Behav Biomed Mater; 2022 Feb; 126():105053. PubMed ID: 34998068 [TBL] [Abstract][Full Text] [Related]
13. The effect of surface treatments on the color stability of CAD-CAM interim fixed dental prostheses. Yao Q; Morton D; Eckert GJ; Lin WS J Prosthet Dent; 2021 Aug; 126(2):248-253. PubMed ID: 32829886 [TBL] [Abstract][Full Text] [Related]
14. Influence of printing orientation on mechanical properties of aged 3D-printed restorative resins. Espinar C; Pérez MM; Pulgar R; Leon-Cecilla A; López-López MT; Della Bona A Dent Mater; 2024 Apr; 40(4):756-763. PubMed ID: 38429216 [TBL] [Abstract][Full Text] [Related]
15. Effect of layer thickness and polishing on wear resistance of additively manufactured occlusal splints. Diken Türksayar AA; Diker B J Dent; 2024 Jul; 146():105101. PubMed ID: 38801940 [TBL] [Abstract][Full Text] [Related]
16. Effect of 3D printing system and post-curing atmosphere on micro- and nano-wear of additive-manufactured occlusal splint materials. Wada J; Wada K; Garoushi S; Shinya A; Wakabayashi N; Iwamoto T; Vallittu PK; Lassila L J Mech Behav Biomed Mater; 2023 Jun; 142():105799. PubMed ID: 37028121 [TBL] [Abstract][Full Text] [Related]
17. Effect of hydrothermal aging on the microhardness of high- and low-viscosity conventional and additively manufactured polymers. Al-Haj Husain N; Feilzer AJ; Kleverlaan CJ; Abou-Ayash S; Özcan M J Prosthet Dent; 2022 Oct; 128(4):822.e1-822.e9. PubMed ID: 36202632 [TBL] [Abstract][Full Text] [Related]
18. Wear resistance and flexural properties of low force SLA- and DLP-printed splint materials in different printing orientations: An in vitro study. Simeon P; Unkovskiy A; Saadat Sarmadi B; Nicic R; Koch PJ; Beuer F; Schmidt F J Mech Behav Biomed Mater; 2024 Apr; 152():106458. PubMed ID: 38364445 [TBL] [Abstract][Full Text] [Related]
19. Monomer release from surgical guide resins manufactured with different 3D printing devices. Kessler A; Reichl FX; Folwaczny M; Högg C Dent Mater; 2020 Nov; 36(11):1486-1492. PubMed ID: 32972769 [TBL] [Abstract][Full Text] [Related]
20. 3D printed versus conventionally cured provisional crown and bridge dental materials. Tahayeri A; Morgan M; Fugolin AP; Bompolaki D; Athirasala A; Pfeifer CS; Ferracane JL; Bertassoni LE Dent Mater; 2018 Feb; 34(2):192-200. PubMed ID: 29110921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]