These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31727928)

  • 1. Free Energy Principle in Human Postural Control System: Skin Stretch Feedback Reduces the Entropy.
    Hur P; Pan YT; DeBuys C
    Sci Rep; 2019 Nov; 9(1):16870. PubMed ID: 31727928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback.
    Pan YT; Yoon HU; Hur P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):28-36. PubMed ID: 26992163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of Vestibular Signals for the Control of Standing in Humans.
    Forbes PA; Luu BL; Van der Loos HF; Croft EA; Inglis JT; Blouin JS
    J Neurosci; 2016 Nov; 36(45):11510-11520. PubMed ID: 27911755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of head position, standing surface and vision to postural control in young adults.
    Adamo DE; Pociask FD; Goldberg A
    J Vestib Res; 2013; 23(1):33-40. PubMed ID: 23549053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Modal Calibration of Vestibular Afference for Human Balance.
    Héroux ME; Law TC; Fitzpatrick RC; Blouin JS
    PLoS One; 2015; 10(4):e0124532. PubMed ID: 25894558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision can recalibrate the vestibular reafference signal used to re-establish postural equilibrium following a platform perturbation.
    Toth AJ; Harris LR; Zettel J; Bent LR
    Exp Brain Res; 2017 Feb; 235(2):407-414. PubMed ID: 27752729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory organization for balance: specific deficits in Alzheimer's but not in Parkinson's disease.
    Chong RK; Horak FB; Frank J; Kaye J
    J Gerontol A Biol Sci Med Sci; 1999 Mar; 54(3):M122-8. PubMed ID: 10191839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual contribution to human standing balance during support surface tilts.
    Assländer L; Hettich G; Mergner T
    Hum Mov Sci; 2015 Jun; 41():147-64. PubMed ID: 25816794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to stand with unexpected sensorimotor delays.
    Rasman BG; Forbes PA; Peters RM; Ortiz O; Franks I; Inglis JT; Chua R; Blouin JS
    Elife; 2021 Aug; 10():. PubMed ID: 34374648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles.
    Allum JH; Honegger F
    Exp Brain Res; 1998 Aug; 121(4):478-94. PubMed ID: 9746156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibular, visual, and somatosensory contributions to human control of upright stance.
    Maurer C; Mergner T; Bolha B; Hlavacka F
    Neurosci Lett; 2000 Mar; 281(2-3):99-102. PubMed ID: 10704752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural stabilization from fingertip contact: I. Variations in sway attenuation, perceived stability and contact forces with aging.
    Tremblay F; Mireault AC; Dessureault L; Manning H; Sveistrup H
    Exp Brain Res; 2004 Aug; 157(3):275-85. PubMed ID: 15205866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues.
    Assländer L; Peterka RJ
    J Neurophysiol; 2016 Aug; 116(2):272-85. PubMed ID: 27075544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of hearing to normal balance.
    Kanegaonkar RG; Amin K; Clarke M
    J Laryngol Otol; 2012 Oct; 126(10):984-8. PubMed ID: 22906584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular training promotes adaptation of multisensory integration in postural control.
    Appiah-Kubi KO; Wright WG
    Gait Posture; 2019 Sep; 73():215-220. PubMed ID: 31376748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visuomotor error augmentation affects mediolateral head and trunk stabilization during walking.
    Qiao M; Richards JT; Franz JR
    Hum Mov Sci; 2019 Dec; 68():102525. PubMed ID: 31731210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity dependence of sensory reweighting in human balance control.
    Missen KJ; Carpenter MG; Assländer L
    J Neurophysiol; 2024 Aug; 132(2):454-460. PubMed ID: 38958285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of visual feedback in postural control during standing.
    Fukuoka Y; Tanaka K; Ishida A; Minamitani H
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):427-34. PubMed ID: 10609630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition and decision-processing speed are associated with performance on dynamic posturography in older adults.
    Redfern MS; Chambers AJ; Sparto PJ; Furman JM; Jennings JR
    Exp Brain Res; 2019 Jan; 237(1):37-45. PubMed ID: 30302490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.