These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31727999)

  • 1. D-sorbitol can keep the viscosity of dispersive ophthalmic viscosurgical device at room temperature for long term.
    Nogami E; Watanabe I; Hoshi H; Kasahara M; Honda N; Sato M; Suzuki K
    Sci Rep; 2019 Nov; 9(1):16815. PubMed ID: 31727999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Clinical Functionality of Dispersive OVDs: Improvement of One of the Properties of 3% Hyaluronic Acid and 4% Chondroitin Sulfate Combination].
    Watanabe I; Suzuki K; Nagata M; Matsushima H
    Yakugaku Zasshi; 2022; 142(4):401-411. PubMed ID: 35370196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition Of D-Sorbitol Improves The Usability Of Ophthalmic Viscosurgical Devices.
    Watanabe I; Nagata M; Matsushima H
    Clin Ophthalmol; 2019; 13():1877-1885. PubMed ID: 31576103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological and Adhesive Properties to Identify Cohesive and Dispersive Ophthalmic Viscosurgical Devices.
    Watanabe I; Hoshi H; Sato M; Suzuki K
    Chem Pharm Bull (Tokyo); 2019; 67(3):277-283. PubMed ID: 30828005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed polymeric systems: New ophthalmic viscosurgical device created by mixing commercially available devices.
    Tognetto D; Cecchini P; D'Aloisio R; Lapasin R
    J Cataract Refract Surg; 2017 Jan; 43(1):109-114. PubMed ID: 28317663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of Rheological Properties of Cohesive Ophthalmic Viscosurgical Devices Composed of Sodium Hyaluronate with High Molecular Weight-2019].
    Watanabe I; Mirumachi H; Konno H; Suzuki K
    Yakugaku Zasshi; 2019; 139(8):1121-1128. PubMed ID: 31366849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical Safety Evaluation of Ophthalmic Viscosurgical Devices in Rabbits and a Novel Mini-Pig Model.
    Leang RS; Kloft LJ; Gray B; Gwon AE; Huang LC
    Ophthalmol Ther; 2019 Mar; 8(1):101-114. PubMed ID: 30778776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of ophthalmic viscosurgical device retention using in vivo confocal microscopy.
    Petroll WM; Jafari M; Lane SS; Jester JV; Cavanagh HD
    J Cataract Refract Surg; 2005 Dec; 31(12):2363-8. PubMed ID: 16473232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ophthalmic Viscosurgical Devices (OVDs) in Challenging Cases: a Review.
    Borkenstein AF; Borkenstein EM; Malyugin B
    Ophthalmol Ther; 2021 Dec; 10(4):831-843. PubMed ID: 34617249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A primer on ocular viscosurgical devices.
    Gerberich AJ; Ipema HJ
    Am J Health Syst Pharm; 2021 Nov; 78(22):2020-2032. PubMed ID: 34050732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal endothelial cell coating during phacoemulsification using a new dispersive hyaluronic acid ophthalmic viscosurgical device.
    Kretz FT; Limberger IJ; Auffarth GU
    J Cataract Refract Surg; 2014 Nov; 40(11):1879-84. PubMed ID: 25217075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of incisional friction and ophthalmic viscosurgical devices on the heat generation of ultrasound during cataract surgery.
    Floyd M; Valentine J; Coombs J; Olson RJ
    J Cataract Refract Surg; 2006 Jul; 32(7):1222-6. PubMed ID: 16857513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal times for a dispersive and a cohesive ophthalmic viscosurgical device correlated with intraocular lens material.
    Auffarth GU; Holzer MP; Visessook N; Apple DJ; Völcker HE
    J Cataract Refract Surg; 2004 Nov; 30(11):2410-4. PubMed ID: 15519097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention and removal of a new viscous dispersive ophthalmic viscosurgical device during cataract surgery in animal eyes.
    Oshika T; Okamoto F; Kaji Y; Hiraoka T; Kiuchi T; Sato M; Kawana K
    Br J Ophthalmol; 2006 Apr; 90(4):485-7. PubMed ID: 16547332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Assessment of Ophthalmic Viscosurgical Devices on Visibility, Spreadability, and Durability as Corneal Wetting Agents for the Wet Shell Technique.
    Watanabe I; Hoshi H; Suzuki K; Nagata M; Matsushima H
    Ophthalmol Ther; 2020 Sep; 9(3):609-623. PubMed ID: 32613592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New classification of ophthalmic viscosurgical devices--2005.
    Arshinoff SA; Jafari M
    J Cataract Refract Surg; 2005 Nov; 31(11):2167-71. PubMed ID: 16412934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification.
    Bissen-Miyajima H
    J Cataract Refract Surg; 2006 Jun; 32(6):1026-31. PubMed ID: 16814065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices.
    Arshinoff SA; Wong E
    J Cataract Refract Surg; 2003 Dec; 29(12):2318-23. PubMed ID: 14709292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety, efficacy, and intraoperative characteristics of DisCoVisc and Healon ophthalmic viscosurgical devices for cataract surgery.
    Modi SS; Davison JA; Walters T
    Clin Ophthalmol; 2011; 5():1381-9. PubMed ID: 22034557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of low and passive flow on OVD thermal properties during phacoemulsification.
    Ungricht EL; Harris JT; Jensen NR; Barlow WR; Murri MS; Olson RJ; Pettey JH
    Can J Ophthalmol; 2023 Dec; 58(6):507-512. PubMed ID: 35868436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.