These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 31728053)
1. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Baumeister J; Chatain N; Hubrich A; Maié T; Costa IG; Denecke B; Han L; Küstermann C; Sontag S; Seré K; Strathmann K; Zenke M; Schuppert A; Brümmendorf TH; Kranc KR; Koschmieder S; Gezer D Leukemia; 2020 Apr; 34(4):1062-1074. PubMed ID: 31728053 [TBL] [Abstract][Full Text] [Related]
2. IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms. de Melo Campos P; Machado-Neto JA; Eide CA; Savage SL; Scopim-Ribeiro R; da Silva Souza Duarte A; Favaro P; Lorand-Metze I; Costa FF; Tognon CE; Druker BJ; Olalla Saad ST; Traina F Oncotarget; 2016 Feb; 7(6):6948-59. PubMed ID: 26755644 [TBL] [Abstract][Full Text] [Related]
3. JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Czech J; Cordua S; Weinbergerova B; Baumeister J; Crepcia A; Han L; Maié T; Costa IG; Denecke B; Maurer A; Schubert C; Feldberg K; Gezer D; Brümmendorf TH; Müller-Newen G; Mayer J; Racil Z; Kubesova B; Knudsen T; Sørensen AL; Holmström M; Kjær L; Skov V; Larsen TS; Hasselbalch HC; Chatain N; Koschmieder S Leukemia; 2019 Apr; 33(4):995-1010. PubMed ID: 30470838 [TBL] [Abstract][Full Text] [Related]
4. A highly specific q-RT-PCR assay to address the relevance of the JAK2WT and JAK2V617F expression levels and control genes in Ph-negative myeloproliferative neoplasms. Fantasia F; Di Capua EN; Cenfra N; Pessina G; Mecarocci S; Rago A; Cotroneo E; Busanello A; Equitani F; Lo-Coco F; Nervi C; Cimino G Ann Hematol; 2014 Apr; 93(4):609-16. PubMed ID: 24173087 [TBL] [Abstract][Full Text] [Related]
5. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633 [TBL] [Abstract][Full Text] [Related]
6. Effect of hypoxia on HIF-1α and NOS3 expressions in CD34 Şoroğlu CV; Uslu-Bıçak İ; Toprak SF; Yavuz AS; Sözer S Adv Med Sci; 2023 Sep; 68(2):169-175. PubMed ID: 37075583 [TBL] [Abstract][Full Text] [Related]
8. VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. Subotički T; Mitrović Ajtić O; Živković E; Diklić M; Đikić D; Tošić M; Beleslin-Čokić B; Dragojević T; Gotić M; Santibanez JF; Čokić V Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206393 [TBL] [Abstract][Full Text] [Related]
9. Quantification of JAK2V617F mutation load by droplet digital PCR can aid in diagnosis of myeloproliferative neoplasms. Zheng CF; Zhao XX; Chen XH; Liu Z; Wang WJ; Luo M; Ren Y; Wang HW Int J Lab Hematol; 2021 Aug; 43(4):645-650. PubMed ID: 33973741 [TBL] [Abstract][Full Text] [Related]
10. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Stetka J; Vyhlidalova P; Lanikova L; Koralkova P; Gursky J; Hlusi A; Flodr P; Hubackova S; Bartek J; Hodny Z; Divoky V Oncogene; 2019 Jul; 38(28):5627-5642. PubMed ID: 30967632 [TBL] [Abstract][Full Text] [Related]
11. [JAK2V617F mutation and TNF-α expression in myeloproliferative neoplasms and their correlation]. Sun CC; Li Y; Tian WJ; Chen YJ; Zhang LY; Liu X; Shan NN Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2014 Aug; 22(4):1022-6. PubMed ID: 25130821 [TBL] [Abstract][Full Text] [Related]
12. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype? Ahmed RZ; Rashid M; Ahmed N; Nadeem M; Shamsi TS Asian Pac J Cancer Prev; 2016; 17(3):923-6. PubMed ID: 27039813 [TBL] [Abstract][Full Text] [Related]
13. [Significance of the JAK2V617F mutation in patients with chronic myeloproliferative neoplasia]. Iványi JL; Marton E; Plander M Orv Hetil; 2011 Nov; 152(45):1795-803. PubMed ID: 22011365 [TBL] [Abstract][Full Text] [Related]
14. [Anti-angiogenic effect of interferon on JAK2V617F positive myeloproliferative neoplasms and its anti-angiogenic mechanisms]. Fu J; Xu Q; Zhao Y; Liu G; Cheng Z; Liang W; Xie X; Gu L Zhonghua Yi Xue Za Zhi; 2015 Dec; 95(46):3727-32. PubMed ID: 26850010 [TBL] [Abstract][Full Text] [Related]
15. Hypoxia inhibits JAK2V617F activation via suppression of SHP-2 function in myeloproliferative neoplasm cells. Mitsumori T; Nozaki Y; Kawashima I; Yamamoto T; Shobu Y; Nakajima K; Morishita S; Komatsu N; Kirito K Exp Hematol; 2014 Sep; 42(9):783-92.e1. PubMed ID: 24860972 [TBL] [Abstract][Full Text] [Related]
16. The Combination of Wu S; Luo P; Rouzi T; Yu Y; Xiong B; Wang Y; Zuo X Cancer Control; 2023; 30():10732748231163648. PubMed ID: 36895113 [TBL] [Abstract][Full Text] [Related]
17. The effects of mutational profiles on phenotypic presentation of myeloproliferative neoplasm subtypes in Bosnia: 18 year follow-up. Kurtovic-Kozaric A; Islamagic E; Komic H; Bilalovic N; Eminovic I; Burekovic A; Uzunovic A; Kurtovic S Bosn J Basic Med Sci; 2020 May; 20(2):236-247. PubMed ID: 31668145 [TBL] [Abstract][Full Text] [Related]
18. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms. Gou P; Zhang W; Giraudier S Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162937 [TBL] [Abstract][Full Text] [Related]
20. [Research progress on molecular pathogenesis of myeloproliferative neoplasms]. Liu L; Xiao ZJ Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Feb; 19(1):239-43. PubMed ID: 21362261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]