These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31728258)
1. Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions. Shi D; Wallyn J; Nguyen DV; Perton F; Felder-Flesch D; Bégin-Colin S; Maaloum M; Krafft MP Beilstein J Nanotechnol; 2019; 10():2103-2115. PubMed ID: 31728258 [TBL] [Abstract][Full Text] [Related]
2. Interfacial Behavior of Oligo(Ethylene Glycol) Dendrons Spread Alone and in Combination with a Phospholipid as Langmuir Monolayers at the Air/Water Interface. Shi D; Nguyen DV; Maaloum M; Gallani JL; Felder-Flesch D; Krafft MP Molecules; 2019 Nov; 24(22):. PubMed ID: 31739495 [TBL] [Abstract][Full Text] [Related]
3. Fluorocarbon Exposure Mode Markedly Affects Phospholipid Monolayer Behavior at the Gas/Liquid Interface: Impact on Size and Stability of Microbubbles. Shi D; Liu X; Counil C; Krafft MP Langmuir; 2019 Aug; 35(31):10025-10033. PubMed ID: 30548072 [TBL] [Abstract][Full Text] [Related]
4. Fluorous-phase iron oxide nanoparticles as enhancers of acoustic droplet vaporization of perfluorocarbons with supra-physiologic boiling point. Vezeridis AM; de Gracia Lux C; Barnhill SA; Kim S; Wu Z; Jin S; Lux J; Gianneschi NC; Mattrey RF J Control Release; 2019 May; 302():54-62. PubMed ID: 30928487 [TBL] [Abstract][Full Text] [Related]
5. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization. Szíjjártó C; Rossi S; Waton G; Krafft MP Langmuir; 2012 Jan; 28(2):1182-9. PubMed ID: 22176688 [TBL] [Abstract][Full Text] [Related]
6. Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles - A Synergistic Effect between Surfactant Molecules and Nanoparticles. Ma J; Pourroy G; Krafft MP J Oleo Sci; 2016 May; 65(5):369-76. PubMed ID: 27087000 [TBL] [Abstract][Full Text] [Related]
7. Recruitment and Immobilization of a Fluorinated Biomarker Across an Interfacial Phospholipid Film using a Fluorocarbon Gas. Yang G; O'Duill M; Gouverneur V; Krafft MP Angew Chem Int Ed Engl; 2015 Jul; 54(29):8402-6. PubMed ID: 26068966 [TBL] [Abstract][Full Text] [Related]
8. Controlling phospholipid self-assembly and film properties using highly fluorinated components--fluorinated monolayers, vesicles, emulsions and microbubbles. Krafft MP Biochimie; 2012 Jan; 94(1):11-25. PubMed ID: 21816205 [TBL] [Abstract][Full Text] [Related]
9. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Krafft MP; Riess JG Biochimie; 1998; 80(5-6):489-514. PubMed ID: 9782389 [TBL] [Abstract][Full Text] [Related]
10. Macrophage functionality and homeostasis in response to oligoethyleneglycol-coated IONPs: Impact of a dendritic architecture. Casset A; Jouhannaud J; Garofalo A; Spiegelhalter C; Nguyen DV; Felder-Flesch D; Pourroy G; Pons F Int J Pharm; 2019 Feb; 556():287-300. PubMed ID: 30557682 [TBL] [Abstract][Full Text] [Related]
11. Comparing Strategies for Magnetic Functionalization of Microbubbles. Beguin E; Bau L; Shrivastava S; Stride E ACS Appl Mater Interfaces; 2019 Jan; 11(2):1829-1840. PubMed ID: 30574777 [TBL] [Abstract][Full Text] [Related]
12. Microbubbles with a Self-Assembled Poloxamer Shell and a Fluorocarbon Inner Gas. Ando Y; Tabata H; Sanchez M; Cagna A; Koyama D; Krafft MP Langmuir; 2016 Nov; 32(47):12461-12467. PubMed ID: 27409141 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting. Hagimori M; Mendoza-Ortega EE; Krafft MP Beilstein J Org Chem; 2021; 17():511-518. PubMed ID: 33727974 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and Characterization of Dendronized Gold Nanoparticles Bearing Charged Peripheral Groups with Antimicrobial Potential. Perli G; Bertuzzi DL; Souto DEP; Ramos MD; Braga CB; Aguiar SB; Ornelas C Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957042 [TBL] [Abstract][Full Text] [Related]
15. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
16. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. Bordeianu C; Parat A; Affolter-Zbaraszczuk C; Muller RN; Boutry S; Begin-Colin S; Meyer F; Laurent S; Felder-Flesch D J Mater Chem B; 2017 Jul; 5(26):5152-5164. PubMed ID: 32264101 [TBL] [Abstract][Full Text] [Related]
17. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance. Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027 [TBL] [Abstract][Full Text] [Related]
18. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789 [TBL] [Abstract][Full Text] [Related]
19. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating. Meyer H; Winkler F; Kunz P; Schmidt AM; Hamacher A; Kassack MU; Janiak C Inorg Chem; 2015 Dec; 54(23):11236-46. PubMed ID: 26595858 [TBL] [Abstract][Full Text] [Related]
20. Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Gazzera L; Milani R; Pirrie L; Schmutz M; Blanck C; Resnati G; Metrangolo P; Krafft MP Angew Chem Int Ed Engl; 2016 Aug; 55(35):10263-7. PubMed ID: 27461549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]