These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31728297)

  • 1. Ricocheting Droplets Moving on Super-Repellent Surfaces.
    Pan S; Guo R; Richardson JJ; Berry JD; Besford QA; Björnmalm M; Yun G; Wu R; Lin Z; Zhong QZ; Zhou J; Sun Q; Li J; Lu Y; Dong Z; Banks MK; Xu W; Jiang J; Jiang L; Caruso F
    Adv Sci (Weinh); 2019 Nov; 6(21):1901846. PubMed ID: 31728297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coatings super-repellent to ultralow surface tension liquids.
    Pan S; Guo R; Björnmalm M; Richardson JJ; Li L; Peng C; Bertleff-Zieschang N; Xu W; Jiang J; Caruso F
    Nat Mater; 2018 Nov; 17(11):1040-1047. PubMed ID: 30323333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting Molecular Dynamics in Composite Coatings to Design Robust Super-Repellent Surfaces.
    Guo R; Goudeli E; Xu W; Richardson JJ; Xu W; Pan S
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104331. PubMed ID: 34997692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position.
    Zhu S; Ren H; Li X; Xiao Y; Li C
    Phys Chem Chem Phys; 2023 Feb; 25(6):4969-4979. PubMed ID: 36722908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Caused Droplet Bouncing from a Cavity Trap-Assisted Superhydrophobic Surface.
    Li W; Lei Y; Chen R; Zhu X; Liao Q; Ye D; Li D
    Langmuir; 2020 Sep; 36(37):11068-11078. PubMed ID: 32847362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface.
    Wu C; Qin X; Zheng H; Xu Z; Song Y; Jin Y; Zhang H; Mo J; Li W; Lu J; Wang Z
    Small; 2023 Oct; ():e2304635. PubMed ID: 37786271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Bouncing: Fundamentals, Regulations, and Applications.
    Han X; Li J; Tang X; Li W; Zhao H; Yang L; Wang L
    Small; 2022 Jun; 18(22):e2200277. PubMed ID: 35306734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotating Surfaces Promote the Shedding of Droplets.
    Tao R; Fang W; Wu J; Dou B; Xu W; Zheng Z; Li B; Wang Z; Feng X; Hao C
    Research (Wash D C); 2023; 6():0023. PubMed ID: 37040478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonspecular Reflection of Droplets.
    Zhu P; Chen C; Nandakumar K; Wang L
    Small; 2021 Jan; 17(3):e2006695. PubMed ID: 33345437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography-Directed Hot-Water Super-Repellent Surfaces.
    Zhu P; Chen R; Wang L
    Adv Sci (Weinh); 2019 Sep; 6(18):1900798. PubMed ID: 31559129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional droplet bouncing on a moving superhydrophobic surface.
    Wang M; Shi Y; Wang S; Xu H; Zhang H; Wei M; Wang X; Peng W; Ding H; Song M
    iScience; 2023 Apr; 26(4):106389. PubMed ID: 37013191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.
    Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z
    ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapour-mediated sensing and motility in two-component droplets.
    Cira NJ; Benusiglio A; Prakash M
    Nature; 2015 Mar; 519(7544):446-50. PubMed ID: 25762146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets.
    Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G
    Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oriented bouncing of droplets with a small Weber number on inclined one-dimensional nanoforests.
    Li M; Guo Q; Wen J; Zhan F; Shi M; Zhou N; Huang C; Wang L; Mao H
    Nanoscale; 2024 Mar; 16(10):5343-5351. PubMed ID: 38375552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet impacting on pillared hydrophobic surfaces with different solid fractions.
    Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D
    J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.