These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31728297)

  • 21. Coalescence of Binary Droplets in the Transformer Oil Based on Small Amounts of Polymer: Effects of Initial Droplet Diameter and Collision Parameter.
    Wang Y; Qian L; Chen Z; Zhou F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32917051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings.
    Liu C; Legchenkova I; Han L; Ge W; Lv C; Feng S; Bormashenko E; Liu Y
    Langmuir; 2020 Aug; 36(32):9608-9615. PubMed ID: 32787135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction.
    Agrawal P; Salomons TT; Chiriac DS; Ross AC; Oleschuk RD
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28327-28335. PubMed ID: 31291086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping between Surface Wettability, Droplets, and Their Impacting Behaviors.
    Zhao C; Montazeri K; Shao B; Won Y
    Langmuir; 2021 Aug; 37(33):9964-9972. PubMed ID: 34378941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrically Induced Liquid Metal Droplet Bouncing.
    Bansal S; Tokuda Y; Peasley J; Subramanian S
    Langmuir; 2022 Jun; 38(22):6996-7004. PubMed ID: 35617048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Numerical Investigation on the Collision Behavior of Unequal-Sized Micro-Nano Droplets.
    Qian L; Liu J; Cong H; Zhou F; Bao F
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypergyrating Droplets Generated on a Selective Laser-Textured Heterogeneous Wettability Surface.
    Pan Q; Sun B; Liu W; Xue W; Cao Y
    Langmuir; 2020 Jul; 36(28):8123-8128. PubMed ID: 32564607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coalescence-induced droplet detachment on low-adhesion surfaces: A three-phase system study.
    Moradi M; Rahimian MH; Chini SF
    Phys Rev E; 2019 Jun; 99(6-1):063102. PubMed ID: 31330640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new scaling number reveals droplet dynamics on vibratory surfaces.
    Song M; Zhao H; Wang T; Wang S; Wan J; Qin X; Wang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2414-2420. PubMed ID: 34753623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Velocity-Switched Droplet Rebound Direction on Anisotropic Superhydrophobic Surfaces.
    Li P; Zhan F; Wang L
    Small; 2024 Feb; 20(6):e2305568. PubMed ID: 37752749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.
    Delele MA; Nuyttens D; Duga AT; Ambaw A; Lebeau F; Nicolai BM; Verboven P
    Soft Matter; 2016 Sep; 12(34):7195-211. PubMed ID: 27501228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water droplet bouncing on a non-superhydrophobic Si nanospring array.
    Kumar S; Namura K; Suzuki M; Singh JP
    Nanoscale Adv; 2021 Feb; 3(3):668-674. PubMed ID: 36133834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
    Liu H; Zheng N; Chen J; Yang D; Wang J
    Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing the shape of supraparticles by controlling the apparent contact angle and contact line friction of droplets.
    Kim J; Hwang H; Butt HJ; Wooh S
    J Colloid Interface Sci; 2021 Apr; 588():157-163. PubMed ID: 33388581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biased Motions of a Droplet on the Inclined Micro-conical Superhydrophobic Surface.
    Li P; Xu X; Yu Y; Wang L; Ji B
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27687-27695. PubMed ID: 34100284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Viscous Droplets on Superamphiphobic Surfaces.
    Zhao B; Wang X; Zhang K; Chen L; Deng X
    Langmuir; 2017 Jan; 33(1):144-151. PubMed ID: 27966980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.
    Quan Y; Zhang LZ
    Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.