These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31728534)

  • 21. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment.
    Yamane H; Ooka T; Jotatsu H; Hosaka Y; Sasaki R; Tao R
    J Exp Bot; 2011 Jun; 62(10):3481-8. PubMed ID: 21378115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FLOWERING LOCUS T1 and TERMINAL FLOWER1 regulatory networks mediate flowering initiation in apple.
    Zuo X; Wang S; Liu X; Tang T; Li Y; Tong L; Shah K; Ma J; An N; Zhao C; Xing L; Zhang D
    Plant Physiol; 2024 Apr; 195(1):580-597. PubMed ID: 38366880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Profiling of phytohormones in apple fruit and buds regarding their role as potential regulators of flower bud formation.
    Milyaev A; Kofler J; Moya YAT; Lempe J; Stefanelli D; Hanke MV; Flachowsky H; von Wirén N; Wünsche JN
    Tree Physiol; 2022 Nov; 42(11):2319-2335. PubMed ID: 35867427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).
    Xing L; Zhang D; Zhao C; Li Y; Ma J; An N; Han M
    Plant Biotechnol J; 2016 Feb; 14(2):749-70. PubMed ID: 26133232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.).
    Kotoda N; Hayashi H; Suzuki M; Igarashi M; Hatsuyama Y; Kidou S; Igasaki T; Nishiguchi M; Yano K; Shimizu T; Takahashi S; Iwanami H; Moriya S; Abe K
    Plant Cell Physiol; 2010 Apr; 51(4):561-75. PubMed ID: 20189942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The study of the characteristics of the secondary flowering of
    Xu Y; Du L; Song X; Zhou C
    PeerJ; 2023; 11():e14655. PubMed ID: 36908812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in 'Fuji' apple (Malus domestica Borkh.).
    Zhang S; Zhang D; Fan S; Du L; Shen Y; Xing L; Li Y; Ma J; Han M
    Plant Physiol Biochem; 2016 Oct; 107():178-186. PubMed ID: 27295342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization.
    Mimida N; Ureshino A; Tanaka N; Shigeta N; Sato N; Moriya-Tanaka Y; Iwanami H; Honda C; Suzuki A; Komori S; Wada M
    Plant Cell Rep; 2011 Aug; 30(8):1485-92. PubMed ID: 21424812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High crop load and low temperature delay the onset of bud initiation in apple.
    Kofler J; Milyaev A; Capezzone F; Stojnić S; Mićić N; Flachowsky H; Hanke MV; Wünsche JN
    Sci Rep; 2019 Nov; 9(1):17986. PubMed ID: 31784602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy.
    Vimont N; Fouché M; Campoy JA; Tong M; Arkoun M; Yvin JC; Wigge PA; Dirlewanger E; Cortijo S; Wenden B
    BMC Genomics; 2019 Dec; 20(1):974. PubMed ID: 31830909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia).
    Ito A; Saito T; Sakamoto D; Sugiura T; Bai S; Moriguchi T
    Tree Physiol; 2016 Jan; 36(1):109-20. PubMed ID: 26546364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica).
    Hättasch C; Flachowsky H; Kapturska D; Hanke MV
    Tree Physiol; 2008 Oct; 28(10):1459-66. PubMed ID: 18708327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple.
    Chen W; Tamada Y; Yamane H; Matsushita M; Osako Y; Gao-Takai M; Luo Z; Tao R
    Plant J; 2022 Aug; 111(4):1015-1031. PubMed ID: 35699670
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Wu R; Tomes S; Karunairetnam S; Tustin SD; Hellens RP; Allan AC; Macknight RC; Varkonyi-Gasic E
    Front Plant Sci; 2017; 8():477. PubMed ID: 28421103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Meta-analysis of RNA-Seq studies reveals genes with dominant functions during flower bud endo- to eco-dormancy transition in Prunus species.
    Canton M; Forestan C; Bonghi C; Varotto S
    Sci Rep; 2021 Jun; 11(1):13173. PubMed ID: 34162991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit.
    Voogd C; Brian LA; Wu R; Wang T; Allan AC; Varkonyi-Gasic E
    New Phytol; 2022 Mar; 233(5):2111-2126. PubMed ID: 34907541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
    Mimida N; Kidou S; Iwanami H; Moriya S; Abe K; Voogd C; Varkonyi-Gasic E; Kotoda N
    Tree Physiol; 2011 May; 31(5):555-66. PubMed ID: 21571725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid droplet-associated gene expression and chromatin remodelling in LIPASE 5'-upstream region from beginning- to mid-endodormant bud in 'Fuji' apple.
    Saito T; Wang S; Ohkawa K; Ohara H; Ikeura H; Ogawa Y; Kondo S
    Plant Mol Biol; 2017 Nov; 95(4-5):441-449. PubMed ID: 29019094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cold Treatment Breaks Dormancy but Jeopardizes Flower Quality in Camellia japonica L.
    Berruti A; Christiaens A; Keyser ED; Labeke MC; Scariot V
    Front Plant Sci; 2015; 6():983. PubMed ID: 26617623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species.
    Soppe WJJ; Viñegra de la Torre N; Albani MC
    Front Plant Sci; 2021; 12():627258. PubMed ID: 33679840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.