These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31728540)
1. Effects of elevated carbon dioxide and elevated temperature on morphological, physiological and anatomical responses of Eucalyptus tereticornis along a soil phosphorus gradient. Duan H; Ontedhu J; Milham P; Lewis JD; Tissue DT Tree Physiol; 2019 Dec; 39(11):1821-1837. PubMed ID: 31728540 [TBL] [Abstract][Full Text] [Related]
2. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
3. Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis. de Dios VR; Turnbull MH; Barbour MM; Ontedhu J; Ghannoum O; Tissue DT Tree Physiol; 2013 Nov; 33(11):1206-15. PubMed ID: 24271087 [TBL] [Abstract][Full Text] [Related]
4. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Apgaua DMG; Tng DYP; Forbes SJ; Ishida YF; Vogado NO; Cernusak LA; Laurance SGW Tree Physiol; 2019 Dec; 39(11):1806-1820. PubMed ID: 31768554 [TBL] [Abstract][Full Text] [Related]
5. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Duan H; Chaszar B; Lewis JD; Smith RA; Huxman TE; Tissue DT Tree Physiol; 2018 Aug; 38(8):1138-1151. PubMed ID: 29701843 [TBL] [Abstract][Full Text] [Related]
6. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410 [TBL] [Abstract][Full Text] [Related]
7. Responses of leaf beetle larvae to elevated [CO₂] and temperature depend on Eucalyptus species. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M Oecologia; 2015 Feb; 177(2):607-17. PubMed ID: 25526844 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Ghannoum O; Phillips NG; Sears MA; Logan BA; Lewis JD; Conroy JP; Tissue DT Plant Cell Environ; 2010 Oct; 33(10):1671-81. PubMed ID: 20492554 [TBL] [Abstract][Full Text] [Related]
9. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore. Murray TJ; Ellsworth DS; Tissue DT; Riegler M Glob Chang Biol; 2013 May; 19(5):1407-16. PubMed ID: 23504696 [TBL] [Abstract][Full Text] [Related]
10. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Murray TJ; Tissue DT; Ellsworth DS; Riegler M Oecologia; 2013 Apr; 171(4):1025-35. PubMed ID: 23053228 [TBL] [Abstract][Full Text] [Related]
11. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Reef R; Slot M; Motro U; Motro M; Motro Y; Adame MF; Garcia M; Aranda J; Lovelock CE; Winter K Photosynth Res; 2016 Aug; 129(2):159-70. PubMed ID: 27259536 [TBL] [Abstract][Full Text] [Related]
12. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Drake JE; Macdonald CA; Tjoelker MG; Crous KY; Gimeno TE; Singh BK; Reich PB; Anderson IC; Ellsworth DS Glob Chang Biol; 2016 Jan; 22(1):380-90. PubMed ID: 26426394 [TBL] [Abstract][Full Text] [Related]
13. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis. Aspinwall MJ; Blackman CJ; de Dios VR; Busch FA; Rymer PD; Loik ME; Drake JE; Pfautsch S; Smith RA; Tjoelker MG; Tissue DT Tree Physiol; 2018 Sep; 38(9):1286-1301. PubMed ID: 29741732 [TBL] [Abstract][Full Text] [Related]
14. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. Aspinwall MJ; Drake JE; Campany C; Vårhammar A; Ghannoum O; Tissue DT; Reich PB; Tjoelker MG New Phytol; 2016 Oct; 212(2):354-67. PubMed ID: 27284963 [TBL] [Abstract][Full Text] [Related]
15. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M J Insect Physiol; 2016 Feb; 85():57-64. PubMed ID: 26678330 [TBL] [Abstract][Full Text] [Related]
16. Photoperiod and CO2 elevation influence morphological and physiological responses to drought in trembling aspen: implications for climate change-induced migration. Inoue S; Dang QL; Man R; Tedla B Tree Physiol; 2020 Jun; 40(7):917-927. PubMed ID: 32310277 [TBL] [Abstract][Full Text] [Related]
17. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Hasegawa S; Macdonald CA; Power SA Glob Chang Biol; 2016 Apr; 22(4):1628-43. PubMed ID: 26546164 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Quentin AG; Crous KY; Barton CV; Ellsworth DS Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960 [TBL] [Abstract][Full Text] [Related]
19. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. Kroner Y; Way DA Glob Chang Biol; 2016 Aug; 22(8):2913-28. PubMed ID: 26728638 [TBL] [Abstract][Full Text] [Related]