BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31728595)

  • 1. Effects of repetitive passive movement on ankle joint on spinal reciprocal inhibition.
    Hirabayashi R; Edama M; Kojima S; Miyaguchi S; Onishi H
    Exp Brain Res; 2019 Dec; 237(12):3409-3417. PubMed ID: 31728595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of spinal reciprocal inhibition depends on the movement speed and range of repetitive passive movement.
    Hirabayashi R; Edama M; Kojima S; Miyaguchi S; Onishi H
    Eur J Neurosci; 2020 Oct; 52(8):3929-3943. PubMed ID: 32511811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participant attention on the intervention target during repetitive passive movement improved spinal reciprocal inhibition enhancement and joint movement function.
    Hirabayashi R; Edama M; Takeda M; Yamada Y; Yokota H; Sekine C; Onishi H
    Eur J Med Res; 2023 Oct; 28(1):428. PubMed ID: 37828546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal reciprocal inhibition in the co-contraction of the lower leg depends on muscle activity ratio.
    Hirabayashi R; Edama M; Kojima S; Ito W; Nakamura E; Kikumoto T; Onishi H
    Exp Brain Res; 2019 Jun; 237(6):1469-1478. PubMed ID: 30899999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity.
    Morita H; Crone C; Christenhuis D; Petersen NT; Nielsen JB
    Brain; 2001 Apr; 124(Pt 4):826-37. PubMed ID: 11287381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion.
    Riso RR; Mosallaie FK; Jensen W; Sinkjaer T
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):244-58. PubMed ID: 10896197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal Ia inhibition between ankle flexors and extensors in man.
    Crone C; Hultborn H; Jespersen B; Nielsen J
    J Physiol; 1987 Aug; 389():163-85. PubMed ID: 3681725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans.
    Perez MA; Lungholt BK; Nielsen JB
    J Physiol; 2005 Oct; 568(Pt 1):343-54. PubMed ID: 16051628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the ankle joint angle in the level of soleus Ia afferent presynaptic inhibition.
    Patikas DA; Kotzamanidis C; Robertson CT; Koceja DM
    Electromyogr Clin Neurophysiol; 2004 Dec; 44(8):503-11. PubMed ID: 15646008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afferents contributing to autogenic inhibition of gastrocnemius following electrical stimulation of its tendon.
    Khan SI; Burne JA
    Brain Res; 2009 Jul; 1282():28-37. PubMed ID: 19414002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man.
    Petersen N; Morita H; Nielsen J
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):605-19. PubMed ID: 10523426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans.
    Mrachacz-Kersting N; Geertsen SS; Stevenson AJ; Nielsen JB
    Exp Brain Res; 2017 May; 235(5):1555-1564. PubMed ID: 28258435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury.
    Knikou M
    Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials.
    Knash ME; Kido A; Gorassini M; Chan KM; Stein RB
    Exp Brain Res; 2003 Dec; 153(3):366-77. PubMed ID: 14610631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plantarflexor stretch training increases reciprocal inhibition measured during voluntary dorsiflexion.
    Blazevich AJ; Kay AD; Waugh C; Fath F; Miller S; Cannavan D
    J Neurophysiol; 2012 Jan; 107(1):250-6. PubMed ID: 21975448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits.
    Jensen W; Lawrence SM; Riso RR; Sinkjaer T
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):265-73. PubMed ID: 11561662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The H-reflex in the passive human soleus muscle is modulated faster than predicted from post-activation depression.
    Voigt M; Sinkjaer T
    Brain Res; 1998 Feb; 783(2):332-46. PubMed ID: 9507181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.
    Yavuz UŞ; Negro F; Diedrichs R; Farina D
    J Neurophysiol; 2018 May; 119(5):1699-1706. PubMed ID: 29384455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans.
    Perez MA; Field-Fote EC; Floeter MK
    J Neurosci; 2003 Mar; 23(6):2014-8. PubMed ID: 12657659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms.
    Mezzarane RA; Magalhães FH; Chaud VM; Elias LA; Kohn AF
    PLoS One; 2015; 10(3):e0121496. PubMed ID: 25807195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.