These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31729141)

  • 1. Climate change disrupts local adaptation and favours upslope migration.
    Anderson JT; Wadgymar SM
    Ecol Lett; 2020 Jan; 23(1):181-192. PubMed ID: 31729141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
    Anderson JT; Gezon ZJ
    Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains.
    Bemmels JB; Anderson JT
    Evolution; 2019 Nov; 73(11):2247-2262. PubMed ID: 31584183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenerational and Within-Generation Plasticity in Response to Climate Change: Insights from a Manipulative Field Experiment across an Elevational Gradient.
    Wadgymar SM; Mactavish RM; Anderson JT
    Am Nat; 2018 Dec; 192(6):698-714. PubMed ID: 30444658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Costs of reproduction under experimental climate change across elevations in the perennial forb
    Hamann E; Wadgymar SM; Anderson JT
    Proc Biol Sci; 2021 Apr; 288(1948):20203134. PubMed ID: 33849323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microgeographic Patterns of Genetic Divergence and Adaptation across Environmental Gradients in Boechera stricta (Brassicaceae).
    Anderson JT; Perera N; Chowdhury B; Mitchell-Olds T
    Am Nat; 2015 Oct; 186 Suppl 1(0):S60-73. PubMed ID: 26656218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spatial scale of adaptation in a native annual plant and its implications for responses to climate change.
    Gorton AJ; Benning JW; Tiffin P; Moeller DA
    Evolution; 2022 Dec; 76(12):2916-2929. PubMed ID: 35880454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.
    Frei ER; Ghazoul J; Matter P; Heggli M; Pluess AR
    Glob Chang Biol; 2014 Feb; 20(2):441-55. PubMed ID: 24115364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource availability alters fitness trade-offs: implications for evolution in stressful environments.
    MacTavish R; Anderson JT
    Am J Bot; 2020 Feb; 107(2):308-318. PubMed ID: 31943133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment.
    Wadgymar SM; Ogilvie JE; Inouye DW; Weis AE; Anderson JT
    New Phytol; 2018 Apr; 218(2):517-529. PubMed ID: 29451307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkeyflower.
    Kooyers NJ; Colicchio JM; Greenlee AB; Patterson E; Handloser NT; Blackman BK
    Am Nat; 2019 Oct; 194(4):541-557. PubMed ID: 31490725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates.
    Gremer JR; Chiono A; Suglia E; Bontrager M; Okafor L; Schmitt J
    Am J Bot; 2020 Feb; 107(2):350-363. PubMed ID: 32056208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does adaptation to historical climate shape plant responses to future rainfall patterns? A rainfall manipulation experiment with common ragweed.
    Gorton AJ; Tiffin P; Moeller DA
    Oecologia; 2019 Aug; 190(4):941-953. PubMed ID: 31289920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk of genetic maladaptation due to climate change in three major European tree species.
    Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C
    Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct responses and range shifts of lizard populations across an elevational gradient under climate change.
    Jiang ZW; Ma L; Mi CR; Tao SA; Guo F; Du WG
    Glob Chang Biol; 2023 May; 29(10):2669-2680. PubMed ID: 36843496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change.
    Pratt JD; Mooney KA
    Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range margin populations show high climate adaptation lags in European trees.
    Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M
    Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local adaptation in a marine foundation species: Implications for resilience to future global change.
    DuBois K; Pollard KN; Kauffman BJ; Williams SL; Stachowicz JJ
    Glob Chang Biol; 2022 Apr; 28(8):2596-2610. PubMed ID: 35007376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invoking adaptation to decipher the genetic legacy of past climate change.
    de Lafontaine G; Napier JD; Petit RJ; Hu FS
    Ecology; 2018 Jul; 99(7):1530-1546. PubMed ID: 29729183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of biotic interactions and local adaptation for plant response to environmental changes: field evidence along an elevational gradient.
    Grassein F; Lavorel S; Till-Bottraud I
    Glob Chang Biol; 2014 May; 20(5):1452-60. PubMed ID: 24306968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.