BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31729172)

  • 21. Carbon nanomaterials for advanced energy conversion and storage.
    Dai L; Chang DW; Baek JB; Lu W
    Small; 2012 Apr; 8(8):1130-66. PubMed ID: 22383334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords?
    Samadian H; Salami MS; Jaymand M; Azarnezhad A; Najafi M; Barabadi H; Ahmadi A
    Mutat Res Rev Mutat Res; 2020; 783():108296. PubMed ID: 32192648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pristine-Graphene-Supported Nitrogen-Doped Carbon Self-Assembled from Glucaminium-Based Ionic Liquids as Metal-Free Catalyst for Oxygen Evolution.
    Zhao M; Li T; Jia L; Li H; Yuan W; Li CM
    ChemSusChem; 2019 Nov; 12(22):5041-5050. PubMed ID: 31589802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities.
    Li X; Xu Y; Li Y; Fan X; Zhang G; Zhang F; Peng W
    J Colloid Interface Sci; 2020 Oct; 577():101-108. PubMed ID: 32473473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen-Doped Carbon Membrane Derived from Polyimide as Free-Standing Electrodes for Flexible Supercapacitors.
    Li Y; Dong J; Zhang J; Zhao X; Yu P; Jin L; Zhang Q
    Small; 2015 Jul; 11(28):3476-84. PubMed ID: 25801961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms.
    Susi T; Pichler T; Ayala P
    Beilstein J Nanotechnol; 2015; 6():177-92. PubMed ID: 25671162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photochromic Carbon Nanomaterials: An Emerging Class of Light-Driven Hybrid Functional Materials.
    Hassan F; Tang Y; Bisoyi HK; Li Q
    Adv Mater; 2024 Jun; ():e2401912. PubMed ID: 38847224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction.
    Li J; Zhang Y; Zhang X; Han J; Wang Y; Gu L; Zhang Z; Wang X; Jian J; Xu P; Song B
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19626-34. PubMed ID: 26305578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalized carbon nanomaterials derived from carbohydrates.
    Jagadeesan D; Eswaramoorthy M
    Chem Asian J; 2010 Feb; 5(2):232-43. PubMed ID: 20029888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heteroatom-Doped Carbon Nanostructures Derived from Conjugated Polymers for Energy Applications.
    He Y; Han X; Du Y; Zhang B; Xu P
    Polymers (Basel); 2016 Oct; 8(10):. PubMed ID: 30974641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorous- and Boron-Doped Graphene-Based Nanomaterials for Energy-Related Applications.
    Ubhi MK; Kaur M; Grewal JK; Sharma VK
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noncovalent interaction of carbon nanostructures.
    Umadevi D; Panigrahi S; Sastry GN
    Acc Chem Res; 2014 Aug; 47(8):2574-81. PubMed ID: 25032482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Walled Carbon Nanohorns for Energy Applications.
    Zhang Z; Han S; Wang C; Li J; Xu G
    Nanomaterials (Basel); 2015 Oct; 5(4):1732-1755. PubMed ID: 28347092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functionalization of graphene for efficient energy conversion and storage.
    Dai L
    Acc Chem Res; 2013 Jan; 46(1):31-42. PubMed ID: 23030244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The stability limits of highly active nitrogen doped carbon ORR nano-catalysts: a mechanistic study of degradation reactions.
    Naumov O; Naumov S; Abel B; Varga A
    Nanoscale; 2018 Apr; 10(14):6724-6733. PubMed ID: 29589847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.
    Wu G; Mack NH; Gao W; Ma S; Zhong R; Han J; Baldwin JK; Zelenay P
    ACS Nano; 2012 Nov; 6(11):9764-76. PubMed ID: 23036092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial Carbon-Based Nanomaterials.
    Xin Q; Shah H; Nawaz A; Xie W; Akram MZ; Batool A; Tian L; Jan SU; Boddula R; Guo B; Liu Q; Gong JR
    Adv Mater; 2019 Nov; 31(45):e1804838. PubMed ID: 30379355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Atomic Metal Doping of Carbon-based Nanomaterials for Energy Conversion.
    Bayatsarmadi B; Zheng Y; Vasileff A; Qiao SZ
    Small; 2017 Jun; 13(21):. PubMed ID: 28402595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.