These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 31729358)
1. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Akri M; Zhao S; Li X; Zang K; Lee AF; Isaacs MA; Xi W; Gangarajula Y; Luo J; Ren Y; Cui YT; Li L; Su Y; Pan X; Wen W; Pan Y; Wilson K; Li L; Qiao B; Ishii H; Liao YF; Wang A; Wang X; Zhang T Nat Commun; 2019 Nov; 10(1):5181. PubMed ID: 31729358 [TBL] [Abstract][Full Text] [Related]
2. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
3. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride. Li X; Phornphimon M; Zhang X; Deng J; Zhang D Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955 [TBL] [Abstract][Full Text] [Related]
4. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X Front Chem; 2020; 8():581923. PubMed ID: 33195071 [TBL] [Abstract][Full Text] [Related]
5. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J Front Chem; 2022; 10():993691. PubMed ID: 36118307 [TBL] [Abstract][Full Text] [Related]
7. Experimental and computational investigation on underlying factors promoting high coke resistance in NiCo bimetallic catalysts during dry reforming of methane. Saelee T; Lerdpongsiripaisarn M; Rittiruam M; Somdee S; Liu A; Praserthdam S; Praserthdam P Sci Rep; 2021 Jan; 11(1):519. PubMed ID: 33436936 [TBL] [Abstract][Full Text] [Related]
9. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576 [TBL] [Abstract][Full Text] [Related]
10. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Zhang W; Zhao H; Song H; Chou L Chem Asian J; 2024 Sep; 19(17):e202400503. PubMed ID: 38842469 [TBL] [Abstract][Full Text] [Related]
11. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH le Saché E; Alvarez Moreno A; Reina TR Front Chem; 2021; 9():672419. PubMed ID: 33937208 [TBL] [Abstract][Full Text] [Related]
12. Nickel-based cerium zirconate inorganic complex structures for CO Martín-Espejo JL; Merkouri LP; Gándara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L J Environ Sci (China); 2024 Jun; 140():12-23. PubMed ID: 38331494 [TBL] [Abstract][Full Text] [Related]
13. A Review on Bimetallic Nickel-Based Catalysts for CO Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875 [TBL] [Abstract][Full Text] [Related]
14. Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism. Xiong H; Dong Y; Hu C; Chen Y; Liu H; Long R; Kong T; Xiong Y J Am Chem Soc; 2024 Apr; 146(13):9465-9475. PubMed ID: 38507822 [TBL] [Abstract][Full Text] [Related]
15. Genesis of Active Pt/CeO Das S; Anjum U; Lim KH; He Q; Hoffman AS; Bare SR; Kozlov SM; Gates BC; Kawi S Small; 2023 Jun; 19(26):e2207272. PubMed ID: 36942900 [TBL] [Abstract][Full Text] [Related]
16. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming. Zhang X; Deng J; Lan T; Shen Y; Qu W; Zhong Q; Zhang D ACS Appl Mater Interfaces; 2022 Jun; 14(22):25439-25447. PubMed ID: 35604327 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field. Motomura A; Nakaya Y; Sampson C; Higo T; Torimoto M; Tsuneki H; Furukawa S; Sekine Y RSC Adv; 2022 Oct; 12(44):28359-28363. PubMed ID: 36320534 [TBL] [Abstract][Full Text] [Related]
18. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Hussien AGS; Polychronopoulou K Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234525 [TBL] [Abstract][Full Text] [Related]
19. Promoted coke resistance of Ni by surface carbon for the dry reforming of methane. Guo Z; Chen S; Yang B iScience; 2023 Mar; 26(3):106237. PubMed ID: 36936792 [TBL] [Abstract][Full Text] [Related]
20. Ni Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]