These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
640 related articles for article (PubMed ID: 31729402)
1. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related]
2. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer. Baur B; Bozdag S Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487 [TBL] [Abstract][Full Text] [Related]
3. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
4. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework. Yang H; Wei Q; Zhong X; Yang H; Li B Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769 [TBL] [Abstract][Full Text] [Related]
5. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning. Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033 [TBL] [Abstract][Full Text] [Related]
6. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
7. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346 [TBL] [Abstract][Full Text] [Related]
8. Interaction-Based Feature Selection for Uncovering Cancer Driver Genes Through Copy Number-Driven Expression Level. Park H; Niida A; Imoto S; Miyano S J Comput Biol; 2017 Feb; 24(2):138-152. PubMed ID: 27759426 [TBL] [Abstract][Full Text] [Related]
9. Identification of druggable cancer driver genes amplified across TCGA datasets. Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471 [TBL] [Abstract][Full Text] [Related]
10. Bayesian variable selection with graphical structure learning: Applications in integrative genomics. Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495 [TBL] [Abstract][Full Text] [Related]
11. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432 [TBL] [Abstract][Full Text] [Related]
12. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. Zhang J; Zhang S; Wang Y; Zhang XS BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034 [TBL] [Abstract][Full Text] [Related]
13. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Ohshima K; Hatakeyama K; Nagashima T; Watanabe Y; Kanto K; Doi Y; Ide T; Shimoda Y; Tanabe T; Ohnami S; Ohnami S; Serizawa M; Maruyama K; Akiyama Y; Urakami K; Kusuhara M; Mochizuki T; Yamaguchi K Sci Rep; 2017 Apr; 7(1):641. PubMed ID: 28377632 [TBL] [Abstract][Full Text] [Related]
14. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data. Nguyen QH; Le DH Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644 [TBL] [Abstract][Full Text] [Related]
15. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. Aure MR; Steinfeld I; Baumbusch LO; Liestøl K; Lipson D; Nyberg S; Naume B; Sahlberg KK; Kristensen VN; Børresen-Dale AL; Lingjærde OC; Yakhini Z PLoS One; 2013; 8(1):e53014. PubMed ID: 23382830 [TBL] [Abstract][Full Text] [Related]
16. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes. Yuan Y; Curtis C; Caldas C; Markowetz F IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):947-54. PubMed ID: 21788678 [TBL] [Abstract][Full Text] [Related]
17. Inferring causal genomic alterations in breast cancer using gene expression data. Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811 [TBL] [Abstract][Full Text] [Related]
18. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. Wrzeszczynski KO; Varadan V; Byrnes J; Lum E; Kamalakaran S; Levine DA; Dimitrova N; Zhang MQ; Lucito R PLoS One; 2011; 6(12):e28503. PubMed ID: 22174824 [TBL] [Abstract][Full Text] [Related]
19. Integrative analysis reveals novel driver genes and molecular subclasses of hepatocellular carcinoma. Yang L; Zhang Z; Sun Y; Pang S; Yao Q; Lin P; Cheng J; Li J; Ding G; Hui L; Li Y; Li H Aging (Albany NY); 2020 Nov; 12(23):23849-23871. PubMed ID: 33221766 [TBL] [Abstract][Full Text] [Related]
20. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method. Amgalan B; Lee H Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]