These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1130 related articles for article (PubMed ID: 31729403)
1. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sandfort V; Yan K; Pickhardt PJ; Summers RM Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403 [TBL] [Abstract][Full Text] [Related]
2. A conventional-to-spectral CT image translation augmentation workflow for robust contrast injection-independent organ segmentation. Lartaud PJ; Dupont C; Hallé D; Schleef A; Dessouky R; Vlachomitrou AS; Rouet JM; Nempont O; Boussel L Med Phys; 2022 Feb; 49(2):1108-1122. PubMed ID: 34689353 [TBL] [Abstract][Full Text] [Related]
3. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data. Song Y; Zheng J; Lei L; Ni Z; Zhao B; Hu Y Ultrasonics; 2022 May; 122():106706. PubMed ID: 35149255 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of CT images from digital body phantoms using CycleGAN. Russ T; Goerttler S; Schnurr AK; Bauer DF; Hatamikia S; Schad LR; Zöllner FG; Chung K Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1741-1750. PubMed ID: 31378841 [TBL] [Abstract][Full Text] [Related]
5. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206 [TBL] [Abstract][Full Text] [Related]
6. Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN. Connell M; Xin Y; Gerard SE; Herrmann J; Shah PK; Martin KT; Rezoagli E; Ippolito D; Rajaei J; Baron R; Delvecchio P; Humayun S; Rizi RR; Bellani G; Cereda M Methods; 2022 Sep; 205():200-209. PubMed ID: 35817338 [TBL] [Abstract][Full Text] [Related]
7. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup. Liu Y; Zhang M; Zhong Z; Zeng X Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images. Ahn Y; Yoon JS; Lee SS; Suk HI; Son JH; Sung YS; Lee Y; Kang BK; Kim HS Korean J Radiol; 2020 Aug; 21(8):987-997. PubMed ID: 32677383 [TBL] [Abstract][Full Text] [Related]
9. Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques. Noguchi S; Nishio M; Yakami M; Nakagomi K; Togashi K Comput Biol Med; 2020 Jun; 121():103767. PubMed ID: 32339097 [TBL] [Abstract][Full Text] [Related]
10. An application of cascaded 3D fully convolutional networks for medical image segmentation. Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation. Lee SB; Hong Y; Cho YJ; Jeong D; Lee J; Yoon SH; Lee S; Choi YH; Cheon JE Korean J Radiol; 2023 Apr; 24(4):294-304. PubMed ID: 36907592 [TBL] [Abstract][Full Text] [Related]
12. DENSE-INception U-net for medical image segmentation. Zhang Z; Wu C; Coleman S; Kerr D Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817 [TBL] [Abstract][Full Text] [Related]
13. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Dong X; Lei Y; Tian S; Wang T; Patel P; Curran WJ; Jani AB; Liu T; Yang X Radiother Oncol; 2019 Dec; 141():192-199. PubMed ID: 31630868 [TBL] [Abstract][Full Text] [Related]
14. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks. Lucena O; Souza R; Rittner L; Frayne R; Lotufo R Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252 [TBL] [Abstract][Full Text] [Related]
15. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
17. Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients. Gutierrez A; Tuladhar A; Wilms M; Rajashekar D; Hill MD; Demchuk A; Goyal M; Fiehler J; Forkert ND Int J Comput Assist Radiol Surg; 2023 May; 18(5):827-836. PubMed ID: 36607506 [TBL] [Abstract][Full Text] [Related]
18. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
19. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Brion E; Léger J; Barragán-Montero AM; Meert N; Lee JA; Macq B Comput Biol Med; 2021 Apr; 131():104269. PubMed ID: 33639352 [TBL] [Abstract][Full Text] [Related]
20. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. Bargsten L; Schlaefer A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]