These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1172 related articles for article (PubMed ID: 31729403)
21. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Brion E; Léger J; Barragán-Montero AM; Meert N; Lee JA; Macq B Comput Biol Med; 2021 Apr; 131():104269. PubMed ID: 33639352 [TBL] [Abstract][Full Text] [Related]
22. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. Bargsten L; Schlaefer A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953 [TBL] [Abstract][Full Text] [Related]
23. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
24. C Zhang Z; Li Y; Shin BS Med Phys; 2022 Oct; 49(10):6491-6504. PubMed ID: 35981348 [TBL] [Abstract][Full Text] [Related]
25. Image generation by GAN and style transfer for agar plate image segmentation. Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902 [TBL] [Abstract][Full Text] [Related]
26. Residual cyclegan for robust domain transformation of histopathological tissue slides. de Bel T; Bokhorst JM; van der Laak J; Litjens G Med Image Anal; 2021 May; 70():102004. PubMed ID: 33647784 [TBL] [Abstract][Full Text] [Related]
27. Realistic CT data augmentation for accurate deep-learning based segmentation of head and neck tumors in kV images acquired during radiation therapy. Gardner M; Bouchta YB; Mylonas A; Mueller M; Cheng C; Chlap P; Finnegan R; Sykes J; Keall PJ; Nguyen DT Med Phys; 2023 Jul; 50(7):4206-4219. PubMed ID: 37029643 [TBL] [Abstract][Full Text] [Related]
28. Spectral augmentation for heart chambers segmentation on conventional contrasted and unenhanced CT scans: an in-depth study. Lartaud PJ; Hallé D; Schleef A; Dessouky R; Vlachomitrou AS; Douek P; Rouet JM; Nempont O; Boussel L Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1699-1709. PubMed ID: 34363582 [TBL] [Abstract][Full Text] [Related]
29. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information. Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686 [TBL] [Abstract][Full Text] [Related]
30. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Budak Ü; Guo Y; Tanyildizi E; Şengür A Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758 [TBL] [Abstract][Full Text] [Related]
31. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675 [TBL] [Abstract][Full Text] [Related]
32. Can Generative Adversarial Networks help to overcome the limited data problem in segmentation? Heilemann G; Matthewman M; Kuess P; Goldner G; Widder J; Georg D; Zimmermann L Z Med Phys; 2022 Aug; 32(3):361-368. PubMed ID: 34930685 [TBL] [Abstract][Full Text] [Related]
33. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images. Li Y; Li W; Xiong J; Xia J; Xie Y Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701 [TBL] [Abstract][Full Text] [Related]
34. Voxel-Wise Medical Imaging Transformation and Adaption Based on CycleGAN and Score-Based Diffusion. Li F; Schöneck M; Beyan O; Caldeira LL Stud Health Technol Inform; 2023 May; 302():1027-1028. PubMed ID: 37203572 [TBL] [Abstract][Full Text] [Related]
35. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning. Li W; Kazemifar S; Bai T; Nguyen D; Weng Y; Li Y; Xia J; Xiong J; Xie Y; Owrangi A; Jiang S Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33545707 [No Abstract] [Full Text] [Related]
36. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Peng Y; Chen S; Qin A; Chen M; Gao X; Liu Y; Miao J; Gu H; Zhao C; Deng X; Qi Z Radiother Oncol; 2020 Sep; 150():217-224. PubMed ID: 32622781 [TBL] [Abstract][Full Text] [Related]
37. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
38. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related]
39. Image factory: A method for synthesizing novel CT images with anatomical guidance. Krishna A; Yenneti S; Wang G; Mueller K Med Phys; 2024 May; 51(5):3464-3479. PubMed ID: 38043097 [TBL] [Abstract][Full Text] [Related]