BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31729492)

  • 1. Versatile printed microheaters to enable low-power thermal control in paper diagnostics.
    Byers KM; Lin LK; Moehling TJ; Stanciu L; Linnes JC
    Analyst; 2019 Dec; 145(1):184-196. PubMed ID: 31729492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printed and Flexible Microheaters Based on Carbon Nanotubes.
    Falco A; Romero FJ; Loghin FC; Lyuleeva A; Becherer M; Lugli P; Morales DP; Rodriguez N; Salmerón JF; Rivadeneyra A
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32961690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks.
    Barmpakos D; Belessi V; Xanthopoulos N; Krontiras CA; Kaltsas G
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Thermal Analysis of Flexible Microheaters.
    Li D; Ruan Y; Chen C; He W; Chi C; Lin Q
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices.
    Singleton J; Zentner C; Buser J; Yager P; LaBarre P; Weigl BH
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8615():86150R. PubMed ID: 25426269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.
    Kim SJ; Reidy SM; Block BP; Wise KD; Zellers ET; Kurabayashi K
    Lab Chip; 2010 Jul; 10(13):1647-54. PubMed ID: 20556268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isothermal Recombinase Polymerase Amplification (RPA) of
    Georgoutsou-Spyridonos M; Filippidou M; Kaprou GD; Mastellos DC; Chatzandroulis S; Tserepi A
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform.
    Pardy T; Rang T; Tulp I
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal lesions in soft tissue induced by optical fiber microheaters.
    Pimentel-Domínguez R; Moreno-Álvarez P; Hautefeuille M; Chavarría A; Hernández-Cordero J
    Biomed Opt Express; 2016 Apr; 7(4):1138-48. PubMed ID: 27446642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Low-Cost, Wireless Smart Thermostat for Isothermal DNA Amplification in Lab-On-A-Chip Devices.
    Pardy T; Sink H; Koel A; Rang T
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision chemical heating for diagnostic devices.
    Buser JR; Diesburg S; Singleton J; Guelig D; Bishop JD; Zentner C; Burton R; LaBarre P; Yager P; Weigl BH
    Lab Chip; 2015 Dec; 15(23):4423-32. PubMed ID: 26503640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser microfabrication of a microheater chip for cell culture outside a cell incubator.
    Nieto D; McGlynn P; de la Fuente M; Lopez-Lopez R; O'connor GM
    Colloids Surf B Biointerfaces; 2017 Jun; 154():263-269. PubMed ID: 28347948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Droplet Deposition via a Superhydrophobic Plate with Integrated Heater and Temperature Sensors.
    Hintermüller MA; Offenzeller C; Knoll M; Tröls A; Jakoby B
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32231168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection.
    Tang R; Yang H; Gong Y; You M; Liu Z; Choi JR; Wen T; Qu Z; Mei Q; Xu F
    Lab Chip; 2017 Mar; 17(7):1270-1279. PubMed ID: 28271104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.
    Hoehl MM; Weißert M; Dannenberg A; Nesch T; Paust N; von Stetten F; Zengerle R; Slocum AH; Steigert J
    Biomed Microdevices; 2014 Jun; 16(3):375-85. PubMed ID: 24562605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-Loop Microreactor on PCB for Ultra-Fast DNA Amplification: Design and Thermal Validation.
    Skaltsounis P; Kokkoris G; Papaioannou TG; Tserepi A
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review.
    Ahmad F; Hashsham SA
    Anal Chim Acta; 2012 Jul; 733():1-15. PubMed ID: 22704369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable and precise miniature lithium heater for point-of-care applications.
    Udugama B; Kadhiresan P; Chan WCW
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4632-4641. PubMed ID: 32071225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of In Vitro Instrumentation Platforms for Evaluating Thermal Therapies in Experimental Cell Culture Models.
    Chamani F; Barnett I; Pyle M; Shrestha T; Prakash P
    Crit Rev Biomed Eng; 2022; 50(2):39-67. PubMed ID: 36374822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance, Easy-to-Fabricate, Nanocomposite Heater for Life Sciences and Biomedical Applications.
    Whulanza Y; Ammar H; Haryadi D; Pangesty AI; Widoretno W; Subekti DT; Charmet J
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.