BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31729601)

  • 1. Selective luminescence determination of cysteine by using terbium-modified silver nanoparticles or terbium-modified graphene quantum dots.
    Jiménez-López J; Llorent-Martínez EJ; Ortega-Barrales P; Ruiz-Medina A
    Mikrochim Acta; 2019 Nov; 186(12):781. PubMed ID: 31729601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene quantum dots-terbium ions as novel sensitive and selective time-resolved luminescent probes.
    Llorent-Martínez EJ; Durán GM; Ríos Á; Ruiz-Medina A
    Anal Bioanal Chem; 2018 Jan; 410(2):391-398. PubMed ID: 29147748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct determination of graphene quantum dots based on terbium-sensitized luminescence.
    Llorent-Martínez EJ; Molina-García L; Durán GM; Ruiz-Medina A; Ríos Á
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():177-181. PubMed ID: 29544115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of DNA based on fluorescence quenching of terbium doped carbon dots.
    Liu L; Zhang C; Yu Y; Chen F
    Mikrochim Acta; 2018 Oct; 185(11):514. PubMed ID: 30353224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescence detection of cysteine based on Ag⁺-mediated conformational change of terbium ion-promoted G-quadruplex.
    Tan H; Tang G; Ma C; Li Q
    Anal Chim Acta; 2016 Feb; 908():161-7. PubMed ID: 26826698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots.
    Afsharipour R; Haji Shabani AM; Dadfarnia S; Kazemi E
    Mikrochim Acta; 2019 Dec; 187(1):54. PubMed ID: 31848725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coumarin-modified graphene quantum dot-based luminogen for the detection of cysteine in aqueous media.
    Sebastian D; Ramakrishnan K
    Photochem Photobiol; 2024; 100(3):549-560. PubMed ID: 37960981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ratiometric fluorescent sensor for detection of metformin based on terbium-1,10-phenanthroline-nitrogen-doped-graphene quantum dots.
    Gazizadeh M; Dehghan G; Soleymani J
    RSC Adv; 2022 Aug; 12(34):22255-22265. PubMed ID: 36043095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen- Doped Graphene Quantum Dots: "Turn-off" Fluorescent Probe for Detection of Ag(+) Ions.
    Tabaraki R; Nateghi A
    J Fluoresc; 2016 Jan; 26(1):297-305. PubMed ID: 26553027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of guanosine 5'-monophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of acid phosphatase activity.
    Wen SH; Liang RP; Zeng HH; Zhang L; Qiu JD
    Mikrochim Acta; 2019 Jan; 186(1):45. PubMed ID: 30610384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-based sensitization of Tb3+ luminescence regulated by Ag+ and cysteine: use as a logic gate and a H2O2 sensor.
    Zhang M; Qu ZB; Ma HY; Zhou T; Shi G
    Chem Commun (Camb); 2014 May; 50(36):4677-9. PubMed ID: 24609123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective antenna effect of graphene quantum dots (GQDs): A new fluorescent sensitizer for rare earth element terbium in aqueous media.
    Wang S; Chu X; Xiang X; Cao Y
    Talanta; 2020 Mar; 209():120504. PubMed ID: 31892072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)-Y(III)-dopamine system.
    Li H; Wu X
    Talanta; 2015 Jun; 138():203-208. PubMed ID: 25863392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex formation of d-metal ions at the interface of Tb(III)-doped silica nanoparticles as a basis of substrate-responsive Tb(III)-centered luminescence.
    Davydov N; Mustafina A; Burilov V; Zvereva E; Katsyuba S; Vagapova L; Konovalov A; Antipin I
    Chemphyschem; 2012 Oct; 13(14):3357-64. PubMed ID: 22763952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine.
    Sun C; Shen J; Cui R; Yuan F; Zhang H; Wu X
    Anal Bioanal Chem; 2019 Mar; 411(7):1375-1381. PubMed ID: 30645663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticles enhanced luminescence of terbium complex in solution for L-dopa determination.
    Alam AM; Kamruzaman M; Lee SH; Kim YH; Jo HJ; Suh YS; Kim SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6005-10. PubMed ID: 22966698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites.
    Kong RM; Yang A; Wang Q; Wang Y; Ma L; Qu F
    Mikrochim Acta; 2017 Dec; 185(1):63. PubMed ID: 29594655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent.
    Shen LM; Chen Q; Sun ZY; Chen XW; Wang JH
    Anal Chem; 2014 May; 86(10):5002-8. PubMed ID: 24773228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescent Probe Based on Terbium-Carbon Quantum Dots for the Quantification of Imidacloprid in Caneberries.
    Llorent-Martínez EJ; Jiménez-López J; Ruiz-Medina A
    J Anal Methods Chem; 2023; 2023():5561071. PubMed ID: 37936614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exceptionally long-lived luminescence emitted from Tb(III) ion caged in an Ag(I)-Tb(III)-thiacalix[4]arene supramolecular complex in water.
    Iki N; Ohta M; Horiuchi T; Hoshino H
    Chem Asian J; 2008 May; 3(5):849-53. PubMed ID: 18386266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.