These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31729674)

  • 1. Brain-Machine Interface-Based Rat-Robot Behavior Control.
    Zhang J; Xu K; Zhang S; Wang Y; Zheng N; Pan G; Chen W; Wu Z; Zheng X
    Adv Exp Med Biol; 2019; 1101():123-147. PubMed ID: 31729674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-robots automatic navigation with electrical reward stimulation.
    Sun C; Zhang X; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():348-51. PubMed ID: 23365901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Mind Control of Rat Cyborg's Continuous Locomotion with Wireless Brain-to-Brain Interface.
    Zhang S; Yuan S; Huang L; Zheng X; Wu Z; Xu K; Pan G
    Sci Rep; 2019 Feb; 9(1):1321. PubMed ID: 30718518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Brain-Robot Interaction System by Fusing Human and Machine Intelligence.
    Mao X; Li W; Lei C; Jin J; Duan F; Chen S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):533-542. PubMed ID: 30716043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to a cortex-controlled robot attached at the pelvis and engaged during locomotion in rats.
    Song W; Giszter SF
    J Neurosci; 2011 Feb; 31(8):3110-28. PubMed ID: 21414932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratbot automatic navigation by electrical reward stimulation based on distance measurement in unknown environments.
    Gao L; Sun C; Zhang C; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5315-8. PubMed ID: 24110936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automatic control model for rat-robot.
    Sun C; Zheng N; Zhang X; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7413-6. PubMed ID: 22256052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robo-pigeon based on an innovative multi-mode telestimulation system.
    Yang J; Huai R; Wang H; Lv C; Su X
    Biomed Mater Eng; 2015; 26 Suppl 1():S357-63. PubMed ID: 26406024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training of a leaning agent for navigation--inspired by brain-machine interface.
    Kitamura T; Nishino D
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):353-65. PubMed ID: 16602595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel rat robot controlled by electrical stimulation of the nigrostriatal pathway.
    Koh CS; Park HY; Shin J; Kong C; Park M; Seo IS; Koo B; Jung HH; Chang JW; Shin HC
    Neurosurg Focus; 2020 Jul; 49(1):E11. PubMed ID: 32610286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of a 2 DoF robot using a brain-machine interface.
    Hortal E; Ubeda A; Iáñez E; Azorín JM
    Comput Methods Programs Biomed; 2014 Sep; 116(2):169-76. PubMed ID: 24694722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A remote constant current stimulator designed for rat-robot navigation.
    Chen X; Xu K; Ye S; Guo S; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2168-71. PubMed ID: 24110151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encode the "STOP" command by photo-stimulation for precise control of rat-robot.
    Chen S; Qu Y; Guo S; Shi Z; Xu K; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2172-5. PubMed ID: 24110152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.