These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3172970)

  • 1. Silymarin-induced mitochondrial Ca2+ release.
    Chávez E; Bravo C
    Life Sci; 1988; 43(12):975-81. PubMed ID: 3172970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of lead-induced mitochondrial Ca2+ efflux.
    Chávez E; Jay D; Bravo C
    J Bioenerg Biomembr; 1987 Jun; 19(3):285-95. PubMed ID: 2887557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria.
    Lund BO; Miller DM; Woods JS
    Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial calcium release as induced by Hg2+.
    Chávez E; Holguín JA
    J Biol Chem; 1988 Mar; 263(8):3582-7. PubMed ID: 3346209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the involvement of dithiol groups in mitochondrial calcium transport: studies with cadmium.
    Chávez E; Briones R; Michel B; Bravo C; Jay D
    Arch Biochem Biophys; 1985 Nov; 242(2):493-7. PubMed ID: 2932999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-induced activation of succinate dehydrogenase and the regulation of mitochondrial oxidative reactions.
    Ezawa I; Ogata E
    J Biochem; 1979 Jan; 85(1):65-74. PubMed ID: 762052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines?
    Krueger MJ; Tan AK; Ackrell BA; Singer TP
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax.
    Starkov AA; Polster BM; Fiskum G
    J Neurochem; 2002 Oct; 83(1):220-8. PubMed ID: 12358746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex.
    González-Flecha B; Boveris A
    Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the energy state of mitochondria influence the surface potential of the inner mitochondrial membrane? A critical appraisal.
    Wojtczak L; Nałecz MJ; Famulski KS; Dygas A; Szewczyk A
    Acta Biochim Pol; 1987; 34(3):299-318. PubMed ID: 2825455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloretin - an uncoupler and an inhibitor of mitochondrial oxidative phosphorylation.
    De Jonge PC; Wieringa T; Van Putten JP; Krans HM; Van Dam K
    Biochim Biophys Acta; 1983 Jan; 722(1):219-25. PubMed ID: 6130789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the exogenous NADH dehydrogenase of heart mitochondria on the transmembranous proton movement.
    Nohl H; Schönheit K
    Arch Biochem Biophys; 1996 Jul; 331(2):259-64. PubMed ID: 8660706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ciclopirox protects mitochondria from hydrogen peroxide toxicity.
    Lee SJ; Jin Y; Yoon HY; Choi BO; Kim HC; Oh YK; Kim HS; Kim WK
    Br J Pharmacol; 2005 Jun; 145(4):469-76. PubMed ID: 15806112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of acetylcolletotrichin on the mitochondrial respiratory chain.
    Foucher B; Chappell JB; McGivan JD
    Biochem J; 1974 Mar; 138(3):415-23. PubMed ID: 4372992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive Ca2+ release from energized mitochondria induced by disulfiram.
    Chávez E; Zazueta C; Bravo C
    J Bioenerg Biomembr; 1989 Jun; 21(3):335-45. PubMed ID: 2545669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.