These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31729853)

  • 1. High-Performance Phosphorus-Graphite Dual-Ion Battery.
    Yu D; Cheng L; Chen M; Wang J; Zhou W; Wei W; Wang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45755-45762. PubMed ID: 31729853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penne-Like MoS
    Zhu H; Zhang F; Li J; Tang Y
    Small; 2018 Mar; 14(13):e1703951. PubMed ID: 29399964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All Carbon Dual Ion Batteries.
    Hu Z; Liu Q; Zhang K; Zhou L; Li L; Chen M; Tao Z; Kang YM; Mai L; Chou SL; Chen J; Dou SX
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35978-35983. PubMed ID: 30207686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries.
    Wang H; Wu Q; Wang Y; Lv X; Wang HG
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorination Design for Highly Stable Electrolyte toward High Mass Loading and Long Cycle Life Sodium-Based Dual-Ion Battery.
    Lin Y; Shang J; Liu Y; Wang Z; Bai Z; Ou X; Tang Y
    Adv Mater; 2024 Jul; 36(27):e2402702. PubMed ID: 38651672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bi-Sb Nanocrystals Embedded in Phosphorus as High-Performance Potassium Ion Battery Electrodes.
    Chen KT; Tuan HY
    ACS Nano; 2020 Sep; 14(9):11648-11661. PubMed ID: 32886479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries.
    Ma R; Fan L; Chen S; Wei Z; Yang Y; Yang H; Qin Y; Lu B
    ACS Appl Mater Interfaces; 2018 May; 10(18):15751-15759. PubMed ID: 29664614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the Role of Fluoroethylene Carbonate on the Stability of Sb||Graphite Dual-Ion Batteries in Propylene Carbonate-Based Electrolyte.
    Yang Z; Zhou XZ; Hao ZQ; Chen J; Li L; Zhao Q; Lai WH; Chou SL
    Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202313142. PubMed ID: 37917045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries.
    Xiao W; Sun Q; Banis MN; Wang B; Liang J; Lushington A; Li R; Li X; Sham TK; Sun X
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30763-30773. PubMed ID: 31343156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a High-Power Si@graphite Anode for Lithium Ion Batteries through a Wet Ball Milling Process.
    Cabello M; Gucciardi E; Herrán A; Carriazo D; Villaverde A; Rojo T
    Molecules; 2020 May; 25(11):. PubMed ID: 32471276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Synthesis of SnO
    Jayan P; Anjali A; Park S; Lee YS; Aravindan V
    Small; 2024 Feb; 20(5):e2305309. PubMed ID: 37752746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergy of Black Phosphorus-Graphite-Polyaniline-Based Ternary Composites for Stable High Reversible Capacity Na-Ion Battery Anodes.
    Jin H; Zhang T; Chuang C; Lu YR; Chan TS; Du Z; Ji H; Wan LJ
    ACS Appl Mater Interfaces; 2019 May; 11(18):16656-16661. PubMed ID: 30985107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode.
    Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation.
    Song J; Wu M; Fang K; Tian T; Wang R; Tang H
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):443-452. PubMed ID: 36265345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.
    Xu GL; Chen Z; Zhong GM; Liu Y; Yang Y; Ma T; Ren Y; Zuo X; Wu XH; Zhang X; Amine K
    Nano Lett; 2016 Jun; 16(6):3955-65. PubMed ID: 27222911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable organic polymer anode for high rate and fast charge sodium based dual-ion battery.
    Liu X; Wu H; Xuan Z; Li L; Fang Y; Yuan W
    ChemSusChem; 2024 Apr; 17(8):e202301223. PubMed ID: 38129311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Germanium-based high-performance dual-ion batteries.
    Zhou J; Zhou Y; Zhang X; Cheng L; Qian M; Wei W; Wang H
    Nanoscale; 2020 Jan; 12(1):79-84. PubMed ID: 31825064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and High-Efficiency Chemical Presodiation Strategy on the SnS
    Zhao B; Liu Y; Hu X; Ding Y; Liu X; Huang S; Li W; Zhang J; Jiang Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18918-18927. PubMed ID: 37018658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries.
    Li WH; Ning QL; Xi XT; Hou BH; Guo JZ; Yang Y; Chen B; Wu XL
    Adv Mater; 2019 Jan; 31(4):e1804766. PubMed ID: 30489656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.