These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31730091)

  • 41. [Fabrication and Surface-Enhanced Raman Scattering Research on Polystyrene Nanospheres Arrays].
    Li B; Niu G; Yi Y; Zhou XW; Liu XD; Ye X; Wang CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2812-7. PubMed ID: 30084602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS
    Miao P; Ma Y; Sun M; Li J; Xu P
    Faraday Discuss; 2019 May; 214(0):297-307. PubMed ID: 30806386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property.
    Kim NY; Leem YC; Hong SH; Park JH; Yim SY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6363-6373. PubMed ID: 30663309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Patterned silver nanorod array substrates for surface-enhanced Raman scattering.
    Marotta NE; Barber JR; Dluhy PR; Bottomley LA
    Appl Spectrosc; 2009 Oct; 63(10):1101-6. PubMed ID: 19843359
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.
    Zhou Q; Meng G; Huang Q; Zhu C; Tang H; Qian Y; Chen B; Chen B
    Phys Chem Chem Phys; 2014 Feb; 16(8):3686-92. PubMed ID: 24419246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal contacts on physical vapor deposited monolayer MoS2.
    Gong C; Huang C; Miller J; Cheng L; Hao Y; Cobden D; Kim J; Ruoff RS; Wallace RM; Cho K; Xu X; Chabal YJ
    ACS Nano; 2013 Dec; 7(12):11350-7. PubMed ID: 24219632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.
    Bian J; Li Q; Huang C; Guo Y; Zaw M; Zhang RQ
    Phys Chem Chem Phys; 2015 Jun; 17(22):14849-55. PubMed ID: 25980466
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-Enhanced Raman Scattering from Au-Nanorod Arrays with Sub-5-nm Gaps Stuck Out of an AAO Template.
    Huang Z; Meng G; Chen B; Zhu C; Han F; Hu X; Wang X
    J Nanosci Nanotechnol; 2016 Jan; 16(1):934-8. PubMed ID: 27398549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical Vapor Deposition of Monolayer Mo(1-x)W(x)S2 Crystals with Tunable Band Gaps.
    Wang Z; Liu P; Ito Y; Ning S; Tan Y; Fujita T; Hirata A; Chen M
    Sci Rep; 2016 Feb; 6():21536. PubMed ID: 26899364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy.
    Yan R; Simpson JR; Bertolazzi S; Brivio J; Watson M; Wu X; Kis A; Luo T; Hight Walker AR; Xing HG
    ACS Nano; 2014 Jan; 8(1):986-93. PubMed ID: 24377295
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Abnormal Out-of-Plane Vibrational Raman Mode in Electrochemically Intercalated Multilayer MoS
    Sun Y; Yin S; Peng R; Liang J; Cong X; Li Y; Li C; Wang B; Lin ML; Tan PH; Wan C; Liu K
    Nano Lett; 2023 Jun; 23(11):5342-5349. PubMed ID: 37219946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.
    Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y
    Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Free-standing Ag triangle arrays a configurable vertical gap for surface enhanced Raman spectroscopy.
    Li K; Wang Y; Jiang K; Ren Y; Dai Y; Lu Y; Wang P
    Nanotechnology; 2017 Sep; 28(38):385401. PubMed ID: 28628485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Giant gap-plasmon tip-enhanced Raman scattering of MoS
    Milekhin AG; Rahaman M; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Nanoscale; 2018 Feb; 10(6):2755-2763. PubMed ID: 29308796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase Transformation on Multilayer 2M-WS
    Guan Y; Chen M; Ding Y; Fang Y; Huang F; Xu CY; Zhen L; Li Y; Yang L; Xu P
    ACS Nano; 2024 Jul; 18(26):17339-17348. PubMed ID: 38905021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.