These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31730334)

  • 1. Sensitive and Site-Selective Determination of Phosphorylated Peptides with a Ratiometric Photoelectrochemical Strategy.
    Fu B; Zhang Z
    Anal Chem; 2019 Dec; 91(23):14829-14833. PubMed ID: 31730334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO
    Xin Y; Li Z; Wu W; Fu B; Wu H; Zhang Z
    Biosens Bioelectron; 2017 Jan; 87():396-403. PubMed ID: 27589402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing.
    Deng W; Shen L; Wang X; Yang C; Yu J; Yan M; Song X
    Biosens Bioelectron; 2016 Aug; 82():132-9. PubMed ID: 27088368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulk/Surface Defects Engineered TiO
    Fu B; Wu W; Gan L; Zhang Z
    Anal Chem; 2019 Nov; 91(22):14611-14617. PubMed ID: 31660734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A "signal-on" photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO
    Qin X; Wang Q; Geng L; Shu X; Wang Y
    Talanta; 2019 May; 197():28-35. PubMed ID: 30771936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ratiometric photoelectrochemical immunosensor based on g-C
    Wu Q; Zhang F; Li H; Li Z; Kang Q; Shen D
    Analyst; 2018 Oct; 143(20):5030-5037. PubMed ID: 30230479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separating photoanode from recognition events: toward a general strategy for a self-powered photoelectrochemical immunoassay with both high sensitivity and anti-interference capabilities.
    Fan GC; Ma L; Jayachandran S; Li Z; Luo X
    Chem Commun (Camb); 2018 Jun; 54(51):7062-7065. PubMed ID: 29876572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides.
    Klemm C; Otto S; Wolf C; Haseloff RF; Beyermann M; Krause E
    J Mass Spectrom; 2006 Dec; 41(12):1623-32. PubMed ID: 17089331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis.
    Qiao L; Roussel C; Wan J; Yang P; Girault HH; Liu B
    J Proteome Res; 2007 Dec; 6(12):4763-9. PubMed ID: 18047269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium dioxide coated MALDI plate for on target analysis of phosphopeptides.
    Torta F; Fusi M; Casari CS; Bottani CE; Bachi A
    J Proteome Res; 2009 Apr; 8(4):1932-42. PubMed ID: 19714878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly selective and picomolar level photoelectrochemical sensor for PCB 101 detection in environmental water samples.
    Shi H; Zhao J; Wang Y; Zhao G
    Biosens Bioelectron; 2016 Jul; 81():503-509. PubMed ID: 27016911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays.
    Xin Y; Li Z; Zhang Z
    Chem Commun (Camb); 2015 Nov; 51(85):15498-501. PubMed ID: 26382019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared-Responsive Photoelectrochemical Aptasensing Platform Based on Plasmonic Nanoparticle-Decorated Two-Dimensional Photonic Crystals.
    Li Z; Zhou X; Yang J; Fu B; Zhang Z
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21417-21423. PubMed ID: 31140775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns.
    Pinkse MW; Uitto PM; Hilhorst MJ; Ooms B; Heck AJ
    Anal Chem; 2004 Jul; 76(14):3935-43. PubMed ID: 15253627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a new type of echinus-like Fe3O4@TiO2 core-shell-structured microspheres and their applications in selectively enriching phosphopeptides and removing phospholipids.
    Li H; Shi X; Qiao L; Lu X; Xu G
    J Chromatogr A; 2013 Feb; 1275():9-16. PubMed ID: 23294993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis.
    Mamone G; Picariello G; Ferranti P; Addeo F
    Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatase-directed phosphorylation-site determination: a synthesis of methods for the detection and identification of phosphopeptides.
    Torres MP; Thapar R; Marzluff WF; Borchers CH
    J Proteome Res; 2005; 4(5):1628-35. PubMed ID: 16212415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.