These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31730619)

  • 1. Protocol development for discovery of angiogenesis inhibitors via automated methods using zebrafish.
    Mauro A; Ng R; Li JY; Guan R; Wang Y; Singh KK; Wen XY
    PLoS One; 2019; 14(11):e0221796. PubMed ID: 31730619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish.
    Tran TC; Sneed B; Haider J; Blavo D; White A; Aiyejorun T; Baranowski TC; Rubinstein AL; Doan TN; Dingledine R; Sandberg EM
    Cancer Res; 2007 Dec; 67(23):11386-92. PubMed ID: 18056466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish.
    Wittmann C; Reischl M; Shah AH; Mikut R; Liebel U; Grabher C
    J Vis Exp; 2012 Jul; (65):e4203. PubMed ID: 22825322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of phosphorylase kinase as a novel therapeutic target through high-throughput screening for anti-angiogenesis compounds in zebrafish.
    Camus S; Quevedo C; Menéndez S; Paramonov I; Stouten PF; Janssen RA; Rueb S; He S; Snaar-Jagalska BE; Laricchia-Robbio L; Izpisua Belmonte JC
    Oncogene; 2012 Sep; 31(39):4333-42. PubMed ID: 22179836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing zebrafish chemical screens.
    Peterson RT; Fishman MC
    Methods Cell Biol; 2011; 105():525-41. PubMed ID: 21951546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo screening and discovery of novel candidate thalidomide analogs in the zebrafish embryo and chicken embryo model systems.
    Beedie SL; Rore HM; Barnett S; Chau CH; Luo W; Greig NH; Figg WD; Vargesson N
    Oncotarget; 2016 May; 7(22):33237-45. PubMed ID: 27120781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Automated Chemical Screens in Zebrafish.
    Saydmohammed M; Tsang M
    Methods Mol Biol; 2018; 1683():383-393. PubMed ID: 29082504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay.
    Cross LM; Cook MA; Lin S; Chen JN; Rubinstein AL
    Arterioscler Thromb Vasc Biol; 2003 May; 23(5):911-2. PubMed ID: 12740225
    [No Abstract]   [Full Text] [Related]  

  • 10. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Wiley DS; Redfield SE; Zon LI
    Methods Cell Biol; 2017; 138():651-679. PubMed ID: 28129862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity.
    Tal T; Kilty C; Smith A; LaLone C; Kennedy B; Tennant A; McCollum CW; Bondesson M; Knudsen T; Padilla S; Kleinstreuer N
    Reprod Toxicol; 2017 Jun; 70():70-81. PubMed ID: 28007540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a monoclonal antibody specific for activated endothelial cells to quantitate angiogenesis in vivo in zebrafish after drug treatment.
    Seng WL; Eng K; Lee J; McGrath P
    Angiogenesis; 2004; 7(3):243-53. PubMed ID: 15609079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants.
    Crawford AD; Liekens S; Kamuhabwa AR; Maes J; Munck S; Busson R; Rozenski J; Esguerra CV; de Witte PA
    PLoS One; 2011 Feb; 6(2):e14694. PubMed ID: 21379387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass.
    Wang G; Rajpurohit SK; Delaspre F; Walker SL; White DT; Ceasrine A; Kuruvilla R; Li RJ; Shim JS; Liu JO; Parsons MJ; Mumm JS
    Elife; 2015 Jul; 4():. PubMed ID: 26218223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirubin-3'-monoxime, a derivative of a chinese antileukemia medicine, inhibits angiogenesis.
    Kim JK; Shin EK; Kang YH; Park JH
    J Cell Biochem; 2011 May; 112(5):1384-91. PubMed ID: 21337385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RapidFire BLAZE-Mode Is Boosting ESI-MS Toward High-Throughput-Screening.
    Bretschneider T; Ozbal C; Holstein M; Winter M; Buettner FH; Thamm S; Bischoff D; Luippold AH
    SLAS Technol; 2019 Aug; 24(4):386-393. PubMed ID: 30698995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile, automated and high-throughput drug screening platform for zebrafish embryos.
    Lubin A; Otterstrom J; Hoade Y; Bjedov I; Stead E; Whelan M; Gestri G; Paran Y; Payne E
    Biol Open; 2021 Sep; 10(9):. PubMed ID: 34472582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphyllin D, a steroidal saponin from Paris polyphylla, inhibits endothelial cell functions in vitro and angiogenesis in zebrafish embryos in vivo.
    Chan JY; Koon JC; Liu X; Detmar M; Yu B; Kong SK; Fung KP
    J Ethnopharmacol; 2011 Sep; 137(1):64-9. PubMed ID: 21658438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebrate embryos as tools for anti-angiogenic drug screening and function.
    Beedie SL; Diamond AJ; Fraga LR; Figg WD; Vargesson N
    Reprod Toxicol; 2017 Jun; 70():49-59. PubMed ID: 27888069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated image-based phenotypic analysis in zebrafish embryos.
    Vogt A; Cholewinski A; Shen X; Nelson SG; Lazo JS; Tsang M; Hukriede NA
    Dev Dyn; 2009 Mar; 238(3):656-63. PubMed ID: 19235725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.